{"version":3,"file":"ml-spectra-fitting.min.js","sources":["../node_modules/is-any-array/src/index.js","../node_modules/ml-array-max/lib-es6/index.js","../node_modules/ml-levenberg-marquardt/src/errorCalculation.js","../node_modules/ml-array-min/lib-es6/index.js","../node_modules/ml-array-rescale/lib-es6/index.js","../node_modules/ml-matrix/src/inspect.js","../node_modules/ml-matrix/src/util.js","../node_modules/ml-matrix/src/matrix.js","../node_modules/ml-matrix/src/stat.js","../node_modules/ml-matrix/src/mathOperations.js","../node_modules/ml-matrix/src/wrap/WrapperMatrix2D.js","../node_modules/ml-matrix/src/dc/lu.js","../node_modules/ml-matrix/src/dc/util.js","../node_modules/ml-matrix/src/dc/qr.js","../node_modules/ml-matrix/src/dc/svd.js","../node_modules/ml-matrix/src/decompositions.js","../node_modules/ml-levenberg-marquardt/src/step.js","../node_modules/ml-levenberg-marquardt/src/gradientFunction.js","../node_modules/ml-levenberg-marquardt/src/index.js","../node_modules/ml-levenberg-marquardt/src/checkOptions.js","../src/selectMethod.js","../node_modules/ml-peak-shape-generator/src/util/constants.js","../node_modules/ml-peak-shape-generator/src/classes/Gaussian.js","../node_modules/ml-peak-shape-generator/src/util/erfinv.js","../node_modules/ml-peak-shape-generator/src/classes/Lorentzian.js","../node_modules/ml-peak-shape-generator/src/classes/PseudoVoigt.js","../src/shapes/sumOfGaussianLorentzians.js","../src/shapes/sumOfGaussians.js","../src/shapes/sumOfLorentzians.js","../src/index.js"],"sourcesContent":["const toString = Object.prototype.toString;\n\nexport default function isAnyArray(object) {\n  return toString.call(object).endsWith('Array]');\n}\n","import isArray from 'is-any-array';\n\nfunction max(input) {\n  var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {};\n\n  if (!isArray(input)) {\n    throw new TypeError('input must be an array');\n  }\n\n  if (input.length === 0) {\n    throw new TypeError('input must not be empty');\n  }\n\n  var _options$fromIndex = options.fromIndex,\n      fromIndex = _options$fromIndex === void 0 ? 0 : _options$fromIndex,\n      _options$toIndex = options.toIndex,\n      toIndex = _options$toIndex === void 0 ? input.length : _options$toIndex;\n\n  if (fromIndex < 0 || fromIndex >= input.length || !Number.isInteger(fromIndex)) {\n    throw new Error('fromIndex must be a positive integer smaller than length');\n  }\n\n  if (toIndex <= fromIndex || toIndex > input.length || !Number.isInteger(toIndex)) {\n    throw new Error('toIndex must be an integer greater than fromIndex and at most equal to length');\n  }\n\n  var maxValue = input[fromIndex];\n\n  for (var i = fromIndex + 1; i < toIndex; i++) {\n    if (input[i] > maxValue) maxValue = input[i];\n  }\n\n  return maxValue;\n}\n\nexport default max;\n","/**\n * the sum of the weighted squares of the errors (or weighted residuals) between the data.y\n * and the curve-fit function.\n * @ignore\n * @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]\n * @param {Array<number>} parameters - Array of current parameter values\n * @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter\n * @param {Array} weightSquare - Square of weights\n * @return {number}\n */\nexport default function errorCalculation(\n  data,\n  parameters,\n  parameterizedFunction,\n  weightSquare,\n) {\n  let error = 0;\n  const func = parameterizedFunction(parameters);\n  for (let i = 0; i < data.x.length; i++) {\n    error += Math.pow(data.y[i] - func(data.x[i]), 2) / weightSquare[i];\n  }\n\n  return error;\n}\n","import isArray from 'is-any-array';\n\nfunction min(input) {\n  var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {};\n\n  if (!isArray(input)) {\n    throw new TypeError('input must be an array');\n  }\n\n  if (input.length === 0) {\n    throw new TypeError('input must not be empty');\n  }\n\n  var _options$fromIndex = options.fromIndex,\n      fromIndex = _options$fromIndex === void 0 ? 0 : _options$fromIndex,\n      _options$toIndex = options.toIndex,\n      toIndex = _options$toIndex === void 0 ? input.length : _options$toIndex;\n\n  if (fromIndex < 0 || fromIndex >= input.length || !Number.isInteger(fromIndex)) {\n    throw new Error('fromIndex must be a positive integer smaller than length');\n  }\n\n  if (toIndex <= fromIndex || toIndex > input.length || !Number.isInteger(toIndex)) {\n    throw new Error('toIndex must be an integer greater than fromIndex and at most equal to length');\n  }\n\n  var minValue = input[fromIndex];\n\n  for (var i = fromIndex + 1; i < toIndex; i++) {\n    if (input[i] < minValue) minValue = input[i];\n  }\n\n  return minValue;\n}\n\nexport default min;\n","import isArray from 'is-any-array';\nimport max from 'ml-array-max';\nimport min from 'ml-array-min';\n\nfunction rescale(input) {\n  var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {};\n\n  if (!isArray(input)) {\n    throw new TypeError('input must be an array');\n  } else if (input.length === 0) {\n    throw new TypeError('input must not be empty');\n  }\n\n  var output;\n\n  if (options.output !== undefined) {\n    if (!isArray(options.output)) {\n      throw new TypeError('output option must be an array if specified');\n    }\n\n    output = options.output;\n  } else {\n    output = new Array(input.length);\n  }\n\n  var currentMin = min(input);\n  var currentMax = max(input);\n\n  if (currentMin === currentMax) {\n    throw new RangeError('minimum and maximum input values are equal. Cannot rescale a constant array');\n  }\n\n  var _options$min = options.min,\n      minValue = _options$min === void 0 ? options.autoMinMax ? currentMin : 0 : _options$min,\n      _options$max = options.max,\n      maxValue = _options$max === void 0 ? options.autoMinMax ? currentMax : 1 : _options$max;\n\n  if (minValue >= maxValue) {\n    throw new RangeError('min option must be smaller than max option');\n  }\n\n  var factor = (maxValue - minValue) / (currentMax - currentMin);\n\n  for (var i = 0; i < input.length; i++) {\n    output[i] = (input[i] - currentMin) * factor + minValue;\n  }\n\n  return output;\n}\n\nexport default rescale;\n","const indent = ' '.repeat(2);\nconst indentData = ' '.repeat(4);\n\nexport function inspectMatrix() {\n  return inspectMatrixWithOptions(this);\n}\n\nexport function inspectMatrixWithOptions(matrix, options = {}) {\n  const { maxRows = 15, maxColumns = 10, maxNumSize = 8 } = options;\n  return `${matrix.constructor.name} {\n${indent}[\n${indentData}${inspectData(matrix, maxRows, maxColumns, maxNumSize)}\n${indent}]\n${indent}rows: ${matrix.rows}\n${indent}columns: ${matrix.columns}\n}`;\n}\n\nfunction inspectData(matrix, maxRows, maxColumns, maxNumSize) {\n  const { rows, columns } = matrix;\n  const maxI = Math.min(rows, maxRows);\n  const maxJ = Math.min(columns, maxColumns);\n  const result = [];\n  for (let i = 0; i < maxI; i++) {\n    let line = [];\n    for (let j = 0; j < maxJ; j++) {\n      line.push(formatNumber(matrix.get(i, j), maxNumSize));\n    }\n    result.push(`${line.join(' ')}`);\n  }\n  if (maxJ !== columns) {\n    result[result.length - 1] += ` ... ${columns - maxColumns} more columns`;\n  }\n  if (maxI !== rows) {\n    result.push(`... ${rows - maxRows} more rows`);\n  }\n  return result.join(`\\n${indentData}`);\n}\n\nfunction formatNumber(num, maxNumSize) {\n  const numStr = String(num);\n  if (numStr.length <= maxNumSize) {\n    return numStr.padEnd(maxNumSize, ' ');\n  }\n  const precise = num.toPrecision(maxNumSize - 2);\n  if (precise.length <= maxNumSize) {\n    return precise;\n  }\n  const exponential = num.toExponential(maxNumSize - 2);\n  const eIndex = exponential.indexOf('e');\n  const e = exponential.slice(eIndex);\n  return exponential.slice(0, maxNumSize - e.length) + e;\n}\n","/**\n * @private\n * Check that a row index is not out of bounds\n * @param {Matrix} matrix\n * @param {number} index\n * @param {boolean} [outer]\n */\nexport function checkRowIndex(matrix, index, outer) {\n  let max = outer ? matrix.rows : matrix.rows - 1;\n  if (index < 0 || index > max) {\n    throw new RangeError('Row index out of range');\n  }\n}\n\n/**\n * @private\n * Check that a column index is not out of bounds\n * @param {Matrix} matrix\n * @param {number} index\n * @param {boolean} [outer]\n */\nexport function checkColumnIndex(matrix, index, outer) {\n  let max = outer ? matrix.columns : matrix.columns - 1;\n  if (index < 0 || index > max) {\n    throw new RangeError('Column index out of range');\n  }\n}\n\n/**\n * @private\n * Check that the provided vector is an array with the right length\n * @param {Matrix} matrix\n * @param {Array|Matrix} vector\n * @return {Array}\n * @throws {RangeError}\n */\nexport function checkRowVector(matrix, vector) {\n  if (vector.to1DArray) {\n    vector = vector.to1DArray();\n  }\n  if (vector.length !== matrix.columns) {\n    throw new RangeError(\n      'vector size must be the same as the number of columns',\n    );\n  }\n  return vector;\n}\n\n/**\n * @private\n * Check that the provided vector is an array with the right length\n * @param {Matrix} matrix\n * @param {Array|Matrix} vector\n * @return {Array}\n * @throws {RangeError}\n */\nexport function checkColumnVector(matrix, vector) {\n  if (vector.to1DArray) {\n    vector = vector.to1DArray();\n  }\n  if (vector.length !== matrix.rows) {\n    throw new RangeError('vector size must be the same as the number of rows');\n  }\n  return vector;\n}\n\nexport function checkIndices(matrix, rowIndices, columnIndices) {\n  return {\n    row: checkRowIndices(matrix, rowIndices),\n    column: checkColumnIndices(matrix, columnIndices),\n  };\n}\n\nexport function checkRowIndices(matrix, rowIndices) {\n  if (typeof rowIndices !== 'object') {\n    throw new TypeError('unexpected type for row indices');\n  }\n\n  let rowOut = rowIndices.some((r) => {\n    return r < 0 || r >= matrix.rows;\n  });\n\n  if (rowOut) {\n    throw new RangeError('row indices are out of range');\n  }\n\n  if (!Array.isArray(rowIndices)) rowIndices = Array.from(rowIndices);\n\n  return rowIndices;\n}\n\nexport function checkColumnIndices(matrix, columnIndices) {\n  if (typeof columnIndices !== 'object') {\n    throw new TypeError('unexpected type for column indices');\n  }\n\n  let columnOut = columnIndices.some((c) => {\n    return c < 0 || c >= matrix.columns;\n  });\n\n  if (columnOut) {\n    throw new RangeError('column indices are out of range');\n  }\n  if (!Array.isArray(columnIndices)) columnIndices = Array.from(columnIndices);\n\n  return columnIndices;\n}\n\nexport function checkRange(matrix, startRow, endRow, startColumn, endColumn) {\n  if (arguments.length !== 5) {\n    throw new RangeError('expected 4 arguments');\n  }\n  checkNumber('startRow', startRow);\n  checkNumber('endRow', endRow);\n  checkNumber('startColumn', startColumn);\n  checkNumber('endColumn', endColumn);\n  if (\n    startRow > endRow ||\n    startColumn > endColumn ||\n    startRow < 0 ||\n    startRow >= matrix.rows ||\n    endRow < 0 ||\n    endRow >= matrix.rows ||\n    startColumn < 0 ||\n    startColumn >= matrix.columns ||\n    endColumn < 0 ||\n    endColumn >= matrix.columns\n  ) {\n    throw new RangeError('Submatrix indices are out of range');\n  }\n}\n\nexport function newArray(length, value = 0) {\n  let array = [];\n  for (let i = 0; i < length; i++) {\n    array.push(value);\n  }\n  return array;\n}\n\nfunction checkNumber(name, value) {\n  if (typeof value !== 'number') {\n    throw new TypeError(`${name} must be a number`);\n  }\n}\n\nexport function checkNonEmpty(matrix) {\n  if (matrix.isEmpty()) {\n    throw new Error('Empty matrix has no elements to index');\n  }\n}\n","import rescale from 'ml-array-rescale';\n\nimport { inspectMatrix, inspectMatrixWithOptions } from './inspect';\nimport { installMathOperations } from './mathOperations';\nimport {\n  sumByRow,\n  sumByColumn,\n  sumAll,\n  productByRow,\n  productByColumn,\n  productAll,\n  varianceByRow,\n  varianceByColumn,\n  varianceAll,\n  centerByRow,\n  centerByColumn,\n  centerAll,\n  scaleByRow,\n  scaleByColumn,\n  scaleAll,\n  getScaleByRow,\n  getScaleByColumn,\n  getScaleAll,\n} from './stat';\nimport {\n  checkRowVector,\n  checkRowIndex,\n  checkColumnIndex,\n  checkColumnVector,\n  checkRange,\n  checkIndices,\n  checkNonEmpty,\n} from './util';\n\nexport class AbstractMatrix {\n  static from1DArray(newRows, newColumns, newData) {\n    let length = newRows * newColumns;\n    if (length !== newData.length) {\n      throw new RangeError('data length does not match given dimensions');\n    }\n    let newMatrix = new Matrix(newRows, newColumns);\n    for (let row = 0; row < newRows; row++) {\n      for (let column = 0; column < newColumns; column++) {\n        newMatrix.set(row, column, newData[row * newColumns + column]);\n      }\n    }\n    return newMatrix;\n  }\n\n  static rowVector(newData) {\n    let vector = new Matrix(1, newData.length);\n    for (let i = 0; i < newData.length; i++) {\n      vector.set(0, i, newData[i]);\n    }\n    return vector;\n  }\n\n  static columnVector(newData) {\n    let vector = new Matrix(newData.length, 1);\n    for (let i = 0; i < newData.length; i++) {\n      vector.set(i, 0, newData[i]);\n    }\n    return vector;\n  }\n\n  static zeros(rows, columns) {\n    return new Matrix(rows, columns);\n  }\n\n  static ones(rows, columns) {\n    return new Matrix(rows, columns).fill(1);\n  }\n\n  static rand(rows, columns, options = {}) {\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { random = Math.random } = options;\n    let matrix = new Matrix(rows, columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        matrix.set(i, j, random());\n      }\n    }\n    return matrix;\n  }\n\n  static randInt(rows, columns, options = {}) {\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { min = 0, max = 1000, random = Math.random } = options;\n    if (!Number.isInteger(min)) throw new TypeError('min must be an integer');\n    if (!Number.isInteger(max)) throw new TypeError('max must be an integer');\n    if (min >= max) throw new RangeError('min must be smaller than max');\n    let interval = max - min;\n    let matrix = new Matrix(rows, columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        let value = min + Math.round(random() * interval);\n        matrix.set(i, j, value);\n      }\n    }\n    return matrix;\n  }\n\n  static eye(rows, columns, value) {\n    if (columns === undefined) columns = rows;\n    if (value === undefined) value = 1;\n    let min = Math.min(rows, columns);\n    let matrix = this.zeros(rows, columns);\n    for (let i = 0; i < min; i++) {\n      matrix.set(i, i, value);\n    }\n    return matrix;\n  }\n\n  static diag(data, rows, columns) {\n    let l = data.length;\n    if (rows === undefined) rows = l;\n    if (columns === undefined) columns = rows;\n    let min = Math.min(l, rows, columns);\n    let matrix = this.zeros(rows, columns);\n    for (let i = 0; i < min; i++) {\n      matrix.set(i, i, data[i]);\n    }\n    return matrix;\n  }\n\n  static min(matrix1, matrix2) {\n    matrix1 = this.checkMatrix(matrix1);\n    matrix2 = this.checkMatrix(matrix2);\n    let rows = matrix1.rows;\n    let columns = matrix1.columns;\n    let result = new Matrix(rows, columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        result.set(i, j, Math.min(matrix1.get(i, j), matrix2.get(i, j)));\n      }\n    }\n    return result;\n  }\n\n  static max(matrix1, matrix2) {\n    matrix1 = this.checkMatrix(matrix1);\n    matrix2 = this.checkMatrix(matrix2);\n    let rows = matrix1.rows;\n    let columns = matrix1.columns;\n    let result = new this(rows, columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        result.set(i, j, Math.max(matrix1.get(i, j), matrix2.get(i, j)));\n      }\n    }\n    return result;\n  }\n\n  static checkMatrix(value) {\n    return AbstractMatrix.isMatrix(value) ? value : new Matrix(value);\n  }\n\n  static isMatrix(value) {\n    return value != null && value.klass === 'Matrix';\n  }\n\n  get size() {\n    return this.rows * this.columns;\n  }\n\n  apply(callback) {\n    if (typeof callback !== 'function') {\n      throw new TypeError('callback must be a function');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        callback.call(this, i, j);\n      }\n    }\n    return this;\n  }\n\n  to1DArray() {\n    let array = [];\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        array.push(this.get(i, j));\n      }\n    }\n    return array;\n  }\n\n  to2DArray() {\n    let copy = [];\n    for (let i = 0; i < this.rows; i++) {\n      copy.push([]);\n      for (let j = 0; j < this.columns; j++) {\n        copy[i].push(this.get(i, j));\n      }\n    }\n    return copy;\n  }\n\n  toJSON() {\n    return this.to2DArray();\n  }\n\n  isRowVector() {\n    return this.rows === 1;\n  }\n\n  isColumnVector() {\n    return this.columns === 1;\n  }\n\n  isVector() {\n    return this.rows === 1 || this.columns === 1;\n  }\n\n  isSquare() {\n    return this.rows === this.columns;\n  }\n\n  isEmpty() {\n    return this.rows === 0 || this.columns === 0;\n  }\n\n  isSymmetric() {\n    if (this.isSquare()) {\n      for (let i = 0; i < this.rows; i++) {\n        for (let j = 0; j <= i; j++) {\n          if (this.get(i, j) !== this.get(j, i)) {\n            return false;\n          }\n        }\n      }\n      return true;\n    }\n    return false;\n  }\n\n  isEchelonForm() {\n    let i = 0;\n    let j = 0;\n    let previousColumn = -1;\n    let isEchelonForm = true;\n    let checked = false;\n    while (i < this.rows && isEchelonForm) {\n      j = 0;\n      checked = false;\n      while (j < this.columns && checked === false) {\n        if (this.get(i, j) === 0) {\n          j++;\n        } else if (this.get(i, j) === 1 && j > previousColumn) {\n          checked = true;\n          previousColumn = j;\n        } else {\n          isEchelonForm = false;\n          checked = true;\n        }\n      }\n      i++;\n    }\n    return isEchelonForm;\n  }\n\n  isReducedEchelonForm() {\n    let i = 0;\n    let j = 0;\n    let previousColumn = -1;\n    let isReducedEchelonForm = true;\n    let checked = false;\n    while (i < this.rows && isReducedEchelonForm) {\n      j = 0;\n      checked = false;\n      while (j < this.columns && checked === false) {\n        if (this.get(i, j) === 0) {\n          j++;\n        } else if (this.get(i, j) === 1 && j > previousColumn) {\n          checked = true;\n          previousColumn = j;\n        } else {\n          isReducedEchelonForm = false;\n          checked = true;\n        }\n      }\n      for (let k = j + 1; k < this.rows; k++) {\n        if (this.get(i, k) !== 0) {\n          isReducedEchelonForm = false;\n        }\n      }\n      i++;\n    }\n    return isReducedEchelonForm;\n  }\n\n  echelonForm() {\n    let result = this.clone();\n    let h = 0;\n    let k = 0;\n    while (h < result.rows && k < result.columns) {\n      let iMax = h;\n      for (let i = h; i < result.rows; i++) {\n        if (result.get(i, k) > result.get(iMax, k)) {\n          iMax = i;\n        }\n      }\n      if (result.get(iMax, k) === 0) {\n        k++;\n      } else {\n        result.swapRows(h, iMax);\n        let tmp = result.get(h, k);\n        for (let j = k; j < result.columns; j++) {\n          result.set(h, j, result.get(h, j) / tmp);\n        }\n        for (let i = h + 1; i < result.rows; i++) {\n          let factor = result.get(i, k) / result.get(h, k);\n          result.set(i, k, 0);\n          for (let j = k + 1; j < result.columns; j++) {\n            result.set(i, j, result.get(i, j) - result.get(h, j) * factor);\n          }\n        }\n        h++;\n        k++;\n      }\n    }\n    return result;\n  }\n\n  reducedEchelonForm() {\n    let result = this.echelonForm();\n    let m = result.columns;\n    let n = result.rows;\n    let h = n - 1;\n    while (h >= 0) {\n      if (result.maxRow(h) === 0) {\n        h--;\n      } else {\n        let p = 0;\n        let pivot = false;\n        while (p < n && pivot === false) {\n          if (result.get(h, p) === 1) {\n            pivot = true;\n          } else {\n            p++;\n          }\n        }\n        for (let i = 0; i < h; i++) {\n          let factor = result.get(i, p);\n          for (let j = p; j < m; j++) {\n            let tmp = result.get(i, j) - factor * result.get(h, j);\n            result.set(i, j, tmp);\n          }\n        }\n        h--;\n      }\n    }\n    return result;\n  }\n\n  set() {\n    throw new Error('set method is unimplemented');\n  }\n\n  get() {\n    throw new Error('get method is unimplemented');\n  }\n\n  repeat(options = {}) {\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { rows = 1, columns = 1 } = options;\n    if (!Number.isInteger(rows) || rows <= 0) {\n      throw new TypeError('rows must be a positive integer');\n    }\n    if (!Number.isInteger(columns) || columns <= 0) {\n      throw new TypeError('columns must be a positive integer');\n    }\n    let matrix = new Matrix(this.rows * rows, this.columns * columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        matrix.setSubMatrix(this, this.rows * i, this.columns * j);\n      }\n    }\n    return matrix;\n  }\n\n  fill(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, value);\n      }\n    }\n    return this;\n  }\n\n  neg() {\n    return this.mulS(-1);\n  }\n\n  getRow(index) {\n    checkRowIndex(this, index);\n    let row = [];\n    for (let i = 0; i < this.columns; i++) {\n      row.push(this.get(index, i));\n    }\n    return row;\n  }\n\n  getRowVector(index) {\n    return Matrix.rowVector(this.getRow(index));\n  }\n\n  setRow(index, array) {\n    checkRowIndex(this, index);\n    array = checkRowVector(this, array);\n    for (let i = 0; i < this.columns; i++) {\n      this.set(index, i, array[i]);\n    }\n    return this;\n  }\n\n  swapRows(row1, row2) {\n    checkRowIndex(this, row1);\n    checkRowIndex(this, row2);\n    for (let i = 0; i < this.columns; i++) {\n      let temp = this.get(row1, i);\n      this.set(row1, i, this.get(row2, i));\n      this.set(row2, i, temp);\n    }\n    return this;\n  }\n\n  getColumn(index) {\n    checkColumnIndex(this, index);\n    let column = [];\n    for (let i = 0; i < this.rows; i++) {\n      column.push(this.get(i, index));\n    }\n    return column;\n  }\n\n  getColumnVector(index) {\n    return Matrix.columnVector(this.getColumn(index));\n  }\n\n  setColumn(index, array) {\n    checkColumnIndex(this, index);\n    array = checkColumnVector(this, array);\n    for (let i = 0; i < this.rows; i++) {\n      this.set(i, index, array[i]);\n    }\n    return this;\n  }\n\n  swapColumns(column1, column2) {\n    checkColumnIndex(this, column1);\n    checkColumnIndex(this, column2);\n    for (let i = 0; i < this.rows; i++) {\n      let temp = this.get(i, column1);\n      this.set(i, column1, this.get(i, column2));\n      this.set(i, column2, temp);\n    }\n    return this;\n  }\n\n  addRowVector(vector) {\n    vector = checkRowVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) + vector[j]);\n      }\n    }\n    return this;\n  }\n\n  subRowVector(vector) {\n    vector = checkRowVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) - vector[j]);\n      }\n    }\n    return this;\n  }\n\n  mulRowVector(vector) {\n    vector = checkRowVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) * vector[j]);\n      }\n    }\n    return this;\n  }\n\n  divRowVector(vector) {\n    vector = checkRowVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) / vector[j]);\n      }\n    }\n    return this;\n  }\n\n  addColumnVector(vector) {\n    vector = checkColumnVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) + vector[i]);\n      }\n    }\n    return this;\n  }\n\n  subColumnVector(vector) {\n    vector = checkColumnVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) - vector[i]);\n      }\n    }\n    return this;\n  }\n\n  mulColumnVector(vector) {\n    vector = checkColumnVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) * vector[i]);\n      }\n    }\n    return this;\n  }\n\n  divColumnVector(vector) {\n    vector = checkColumnVector(this, vector);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) / vector[i]);\n      }\n    }\n    return this;\n  }\n\n  mulRow(index, value) {\n    checkRowIndex(this, index);\n    for (let i = 0; i < this.columns; i++) {\n      this.set(index, i, this.get(index, i) * value);\n    }\n    return this;\n  }\n\n  mulColumn(index, value) {\n    checkColumnIndex(this, index);\n    for (let i = 0; i < this.rows; i++) {\n      this.set(i, index, this.get(i, index) * value);\n    }\n    return this;\n  }\n\n  max() {\n    if (this.isEmpty()) {\n      return NaN;\n    }\n    let v = this.get(0, 0);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        if (this.get(i, j) > v) {\n          v = this.get(i, j);\n        }\n      }\n    }\n    return v;\n  }\n\n  maxIndex() {\n    checkNonEmpty(this);\n    let v = this.get(0, 0);\n    let idx = [0, 0];\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        if (this.get(i, j) > v) {\n          v = this.get(i, j);\n          idx[0] = i;\n          idx[1] = j;\n        }\n      }\n    }\n    return idx;\n  }\n\n  min() {\n    if (this.isEmpty()) {\n      return NaN;\n    }\n    let v = this.get(0, 0);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        if (this.get(i, j) < v) {\n          v = this.get(i, j);\n        }\n      }\n    }\n    return v;\n  }\n\n  minIndex() {\n    checkNonEmpty(this);\n    let v = this.get(0, 0);\n    let idx = [0, 0];\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        if (this.get(i, j) < v) {\n          v = this.get(i, j);\n          idx[0] = i;\n          idx[1] = j;\n        }\n      }\n    }\n    return idx;\n  }\n\n  maxRow(row) {\n    checkRowIndex(this, row);\n    if (this.isEmpty()) {\n      return NaN;\n    }\n    let v = this.get(row, 0);\n    for (let i = 1; i < this.columns; i++) {\n      if (this.get(row, i) > v) {\n        v = this.get(row, i);\n      }\n    }\n    return v;\n  }\n\n  maxRowIndex(row) {\n    checkRowIndex(this, row);\n    checkNonEmpty(this);\n    let v = this.get(row, 0);\n    let idx = [row, 0];\n    for (let i = 1; i < this.columns; i++) {\n      if (this.get(row, i) > v) {\n        v = this.get(row, i);\n        idx[1] = i;\n      }\n    }\n    return idx;\n  }\n\n  minRow(row) {\n    checkRowIndex(this, row);\n    if (this.isEmpty()) {\n      return NaN;\n    }\n    let v = this.get(row, 0);\n    for (let i = 1; i < this.columns; i++) {\n      if (this.get(row, i) < v) {\n        v = this.get(row, i);\n      }\n    }\n    return v;\n  }\n\n  minRowIndex(row) {\n    checkRowIndex(this, row);\n    checkNonEmpty(this);\n    let v = this.get(row, 0);\n    let idx = [row, 0];\n    for (let i = 1; i < this.columns; i++) {\n      if (this.get(row, i) < v) {\n        v = this.get(row, i);\n        idx[1] = i;\n      }\n    }\n    return idx;\n  }\n\n  maxColumn(column) {\n    checkColumnIndex(this, column);\n    if (this.isEmpty()) {\n      return NaN;\n    }\n    let v = this.get(0, column);\n    for (let i = 1; i < this.rows; i++) {\n      if (this.get(i, column) > v) {\n        v = this.get(i, column);\n      }\n    }\n    return v;\n  }\n\n  maxColumnIndex(column) {\n    checkColumnIndex(this, column);\n    checkNonEmpty(this);\n    let v = this.get(0, column);\n    let idx = [0, column];\n    for (let i = 1; i < this.rows; i++) {\n      if (this.get(i, column) > v) {\n        v = this.get(i, column);\n        idx[0] = i;\n      }\n    }\n    return idx;\n  }\n\n  minColumn(column) {\n    checkColumnIndex(this, column);\n    if (this.isEmpty()) {\n      return NaN;\n    }\n    let v = this.get(0, column);\n    for (let i = 1; i < this.rows; i++) {\n      if (this.get(i, column) < v) {\n        v = this.get(i, column);\n      }\n    }\n    return v;\n  }\n\n  minColumnIndex(column) {\n    checkColumnIndex(this, column);\n    checkNonEmpty(this);\n    let v = this.get(0, column);\n    let idx = [0, column];\n    for (let i = 1; i < this.rows; i++) {\n      if (this.get(i, column) < v) {\n        v = this.get(i, column);\n        idx[0] = i;\n      }\n    }\n    return idx;\n  }\n\n  diag() {\n    let min = Math.min(this.rows, this.columns);\n    let diag = [];\n    for (let i = 0; i < min; i++) {\n      diag.push(this.get(i, i));\n    }\n    return diag;\n  }\n\n  norm(type = 'frobenius') {\n    let result = 0;\n    if (type === 'max') {\n      return this.max();\n    } else if (type === 'frobenius') {\n      for (let i = 0; i < this.rows; i++) {\n        for (let j = 0; j < this.columns; j++) {\n          result = result + this.get(i, j) * this.get(i, j);\n        }\n      }\n      return Math.sqrt(result);\n    } else {\n      throw new RangeError(`unknown norm type: ${type}`);\n    }\n  }\n\n  cumulativeSum() {\n    let sum = 0;\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        sum += this.get(i, j);\n        this.set(i, j, sum);\n      }\n    }\n    return this;\n  }\n\n  dot(vector2) {\n    if (AbstractMatrix.isMatrix(vector2)) vector2 = vector2.to1DArray();\n    let vector1 = this.to1DArray();\n    if (vector1.length !== vector2.length) {\n      throw new RangeError('vectors do not have the same size');\n    }\n    let dot = 0;\n    for (let i = 0; i < vector1.length; i++) {\n      dot += vector1[i] * vector2[i];\n    }\n    return dot;\n  }\n\n  mmul(other) {\n    other = Matrix.checkMatrix(other);\n\n    let m = this.rows;\n    let n = this.columns;\n    let p = other.columns;\n\n    let result = new Matrix(m, p);\n\n    let Bcolj = new Float64Array(n);\n    for (let j = 0; j < p; j++) {\n      for (let k = 0; k < n; k++) {\n        Bcolj[k] = other.get(k, j);\n      }\n\n      for (let i = 0; i < m; i++) {\n        let s = 0;\n        for (let k = 0; k < n; k++) {\n          s += this.get(i, k) * Bcolj[k];\n        }\n\n        result.set(i, j, s);\n      }\n    }\n    return result;\n  }\n\n  strassen2x2(other) {\n    other = Matrix.checkMatrix(other);\n    let result = new Matrix(2, 2);\n    const a11 = this.get(0, 0);\n    const b11 = other.get(0, 0);\n    const a12 = this.get(0, 1);\n    const b12 = other.get(0, 1);\n    const a21 = this.get(1, 0);\n    const b21 = other.get(1, 0);\n    const a22 = this.get(1, 1);\n    const b22 = other.get(1, 1);\n\n    // Compute intermediate values.\n    const m1 = (a11 + a22) * (b11 + b22);\n    const m2 = (a21 + a22) * b11;\n    const m3 = a11 * (b12 - b22);\n    const m4 = a22 * (b21 - b11);\n    const m5 = (a11 + a12) * b22;\n    const m6 = (a21 - a11) * (b11 + b12);\n    const m7 = (a12 - a22) * (b21 + b22);\n\n    // Combine intermediate values into the output.\n    const c00 = m1 + m4 - m5 + m7;\n    const c01 = m3 + m5;\n    const c10 = m2 + m4;\n    const c11 = m1 - m2 + m3 + m6;\n\n    result.set(0, 0, c00);\n    result.set(0, 1, c01);\n    result.set(1, 0, c10);\n    result.set(1, 1, c11);\n    return result;\n  }\n\n  strassen3x3(other) {\n    other = Matrix.checkMatrix(other);\n    let result = new Matrix(3, 3);\n\n    const a00 = this.get(0, 0);\n    const a01 = this.get(0, 1);\n    const a02 = this.get(0, 2);\n    const a10 = this.get(1, 0);\n    const a11 = this.get(1, 1);\n    const a12 = this.get(1, 2);\n    const a20 = this.get(2, 0);\n    const a21 = this.get(2, 1);\n    const a22 = this.get(2, 2);\n\n    const b00 = other.get(0, 0);\n    const b01 = other.get(0, 1);\n    const b02 = other.get(0, 2);\n    const b10 = other.get(1, 0);\n    const b11 = other.get(1, 1);\n    const b12 = other.get(1, 2);\n    const b20 = other.get(2, 0);\n    const b21 = other.get(2, 1);\n    const b22 = other.get(2, 2);\n\n    const m1 = (a00 + a01 + a02 - a10 - a11 - a21 - a22) * b11;\n    const m2 = (a00 - a10) * (-b01 + b11);\n    const m3 = a11 * (-b00 + b01 + b10 - b11 - b12 - b20 + b22);\n    const m4 = (-a00 + a10 + a11) * (b00 - b01 + b11);\n    const m5 = (a10 + a11) * (-b00 + b01);\n    const m6 = a00 * b00;\n    const m7 = (-a00 + a20 + a21) * (b00 - b02 + b12);\n    const m8 = (-a00 + a20) * (b02 - b12);\n    const m9 = (a20 + a21) * (-b00 + b02);\n    const m10 = (a00 + a01 + a02 - a11 - a12 - a20 - a21) * b12;\n    const m11 = a21 * (-b00 + b02 + b10 - b11 - b12 - b20 + b21);\n    const m12 = (-a02 + a21 + a22) * (b11 + b20 - b21);\n    const m13 = (a02 - a22) * (b11 - b21);\n    const m14 = a02 * b20;\n    const m15 = (a21 + a22) * (-b20 + b21);\n    const m16 = (-a02 + a11 + a12) * (b12 + b20 - b22);\n    const m17 = (a02 - a12) * (b12 - b22);\n    const m18 = (a11 + a12) * (-b20 + b22);\n    const m19 = a01 * b10;\n    const m20 = a12 * b21;\n    const m21 = a10 * b02;\n    const m22 = a20 * b01;\n    const m23 = a22 * b22;\n\n    const c00 = m6 + m14 + m19;\n    const c01 = m1 + m4 + m5 + m6 + m12 + m14 + m15;\n    const c02 = m6 + m7 + m9 + m10 + m14 + m16 + m18;\n    const c10 = m2 + m3 + m4 + m6 + m14 + m16 + m17;\n    const c11 = m2 + m4 + m5 + m6 + m20;\n    const c12 = m14 + m16 + m17 + m18 + m21;\n    const c20 = m6 + m7 + m8 + m11 + m12 + m13 + m14;\n    const c21 = m12 + m13 + m14 + m15 + m22;\n    const c22 = m6 + m7 + m8 + m9 + m23;\n\n    result.set(0, 0, c00);\n    result.set(0, 1, c01);\n    result.set(0, 2, c02);\n    result.set(1, 0, c10);\n    result.set(1, 1, c11);\n    result.set(1, 2, c12);\n    result.set(2, 0, c20);\n    result.set(2, 1, c21);\n    result.set(2, 2, c22);\n    return result;\n  }\n\n  mmulStrassen(y) {\n    y = Matrix.checkMatrix(y);\n    let x = this.clone();\n    let r1 = x.rows;\n    let c1 = x.columns;\n    let r2 = y.rows;\n    let c2 = y.columns;\n    if (c1 !== r2) {\n      // eslint-disable-next-line no-console\n      console.warn(\n        `Multiplying ${r1} x ${c1} and ${r2} x ${c2} matrix: dimensions do not match.`,\n      );\n    }\n\n    // Put a matrix into the top left of a matrix of zeros.\n    // `rows` and `cols` are the dimensions of the output matrix.\n    function embed(mat, rows, cols) {\n      let r = mat.rows;\n      let c = mat.columns;\n      if (r === rows && c === cols) {\n        return mat;\n      } else {\n        let resultat = AbstractMatrix.zeros(rows, cols);\n        resultat = resultat.setSubMatrix(mat, 0, 0);\n        return resultat;\n      }\n    }\n\n    // Make sure both matrices are the same size.\n    // This is exclusively for simplicity:\n    // this algorithm can be implemented with matrices of different sizes.\n\n    let r = Math.max(r1, r2);\n    let c = Math.max(c1, c2);\n    x = embed(x, r, c);\n    y = embed(y, r, c);\n\n    // Our recursive multiplication function.\n    function blockMult(a, b, rows, cols) {\n      // For small matrices, resort to naive multiplication.\n      if (rows <= 512 || cols <= 512) {\n        return a.mmul(b); // a is equivalent to this\n      }\n\n      // Apply dynamic padding.\n      if (rows % 2 === 1 && cols % 2 === 1) {\n        a = embed(a, rows + 1, cols + 1);\n        b = embed(b, rows + 1, cols + 1);\n      } else if (rows % 2 === 1) {\n        a = embed(a, rows + 1, cols);\n        b = embed(b, rows + 1, cols);\n      } else if (cols % 2 === 1) {\n        a = embed(a, rows, cols + 1);\n        b = embed(b, rows, cols + 1);\n      }\n\n      let halfRows = parseInt(a.rows / 2, 10);\n      let halfCols = parseInt(a.columns / 2, 10);\n      // Subdivide input matrices.\n      let a11 = a.subMatrix(0, halfRows - 1, 0, halfCols - 1);\n      let b11 = b.subMatrix(0, halfRows - 1, 0, halfCols - 1);\n\n      let a12 = a.subMatrix(0, halfRows - 1, halfCols, a.columns - 1);\n      let b12 = b.subMatrix(0, halfRows - 1, halfCols, b.columns - 1);\n\n      let a21 = a.subMatrix(halfRows, a.rows - 1, 0, halfCols - 1);\n      let b21 = b.subMatrix(halfRows, b.rows - 1, 0, halfCols - 1);\n\n      let a22 = a.subMatrix(halfRows, a.rows - 1, halfCols, a.columns - 1);\n      let b22 = b.subMatrix(halfRows, b.rows - 1, halfCols, b.columns - 1);\n\n      // Compute intermediate values.\n      let m1 = blockMult(\n        AbstractMatrix.add(a11, a22),\n        AbstractMatrix.add(b11, b22),\n        halfRows,\n        halfCols,\n      );\n      let m2 = blockMult(AbstractMatrix.add(a21, a22), b11, halfRows, halfCols);\n      let m3 = blockMult(a11, AbstractMatrix.sub(b12, b22), halfRows, halfCols);\n      let m4 = blockMult(a22, AbstractMatrix.sub(b21, b11), halfRows, halfCols);\n      let m5 = blockMult(AbstractMatrix.add(a11, a12), b22, halfRows, halfCols);\n      let m6 = blockMult(\n        AbstractMatrix.sub(a21, a11),\n        AbstractMatrix.add(b11, b12),\n        halfRows,\n        halfCols,\n      );\n      let m7 = blockMult(\n        AbstractMatrix.sub(a12, a22),\n        AbstractMatrix.add(b21, b22),\n        halfRows,\n        halfCols,\n      );\n\n      // Combine intermediate values into the output.\n      let c11 = AbstractMatrix.add(m1, m4);\n      c11.sub(m5);\n      c11.add(m7);\n      let c12 = AbstractMatrix.add(m3, m5);\n      let c21 = AbstractMatrix.add(m2, m4);\n      let c22 = AbstractMatrix.sub(m1, m2);\n      c22.add(m3);\n      c22.add(m6);\n\n      // Crop output to the desired size (undo dynamic padding).\n      let resultat = AbstractMatrix.zeros(2 * c11.rows, 2 * c11.columns);\n      resultat = resultat.setSubMatrix(c11, 0, 0);\n      resultat = resultat.setSubMatrix(c12, c11.rows, 0);\n      resultat = resultat.setSubMatrix(c21, 0, c11.columns);\n      resultat = resultat.setSubMatrix(c22, c11.rows, c11.columns);\n      return resultat.subMatrix(0, rows - 1, 0, cols - 1);\n    }\n    return blockMult(x, y, r, c);\n  }\n\n  scaleRows(options = {}) {\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { min = 0, max = 1 } = options;\n    if (!Number.isFinite(min)) throw new TypeError('min must be a number');\n    if (!Number.isFinite(max)) throw new TypeError('max must be a number');\n    if (min >= max) throw new RangeError('min must be smaller than max');\n    let newMatrix = new Matrix(this.rows, this.columns);\n    for (let i = 0; i < this.rows; i++) {\n      const row = this.getRow(i);\n      if (row.length > 0) {\n        rescale(row, { min, max, output: row });\n      }\n      newMatrix.setRow(i, row);\n    }\n    return newMatrix;\n  }\n\n  scaleColumns(options = {}) {\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { min = 0, max = 1 } = options;\n    if (!Number.isFinite(min)) throw new TypeError('min must be a number');\n    if (!Number.isFinite(max)) throw new TypeError('max must be a number');\n    if (min >= max) throw new RangeError('min must be smaller than max');\n    let newMatrix = new Matrix(this.rows, this.columns);\n    for (let i = 0; i < this.columns; i++) {\n      const column = this.getColumn(i);\n      if (column.length) {\n        rescale(column, {\n          min: min,\n          max: max,\n          output: column,\n        });\n      }\n      newMatrix.setColumn(i, column);\n    }\n    return newMatrix;\n  }\n\n  flipRows() {\n    const middle = Math.ceil(this.columns / 2);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < middle; j++) {\n        let first = this.get(i, j);\n        let last = this.get(i, this.columns - 1 - j);\n        this.set(i, j, last);\n        this.set(i, this.columns - 1 - j, first);\n      }\n    }\n    return this;\n  }\n\n  flipColumns() {\n    const middle = Math.ceil(this.rows / 2);\n    for (let j = 0; j < this.columns; j++) {\n      for (let i = 0; i < middle; i++) {\n        let first = this.get(i, j);\n        let last = this.get(this.rows - 1 - i, j);\n        this.set(i, j, last);\n        this.set(this.rows - 1 - i, j, first);\n      }\n    }\n    return this;\n  }\n\n  kroneckerProduct(other) {\n    other = Matrix.checkMatrix(other);\n\n    let m = this.rows;\n    let n = this.columns;\n    let p = other.rows;\n    let q = other.columns;\n\n    let result = new Matrix(m * p, n * q);\n    for (let i = 0; i < m; i++) {\n      for (let j = 0; j < n; j++) {\n        for (let k = 0; k < p; k++) {\n          for (let l = 0; l < q; l++) {\n            result.set(p * i + k, q * j + l, this.get(i, j) * other.get(k, l));\n          }\n        }\n      }\n    }\n    return result;\n  }\n\n  transpose() {\n    let result = new Matrix(this.columns, this.rows);\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        result.set(j, i, this.get(i, j));\n      }\n    }\n    return result;\n  }\n\n  sortRows(compareFunction = compareNumbers) {\n    for (let i = 0; i < this.rows; i++) {\n      this.setRow(i, this.getRow(i).sort(compareFunction));\n    }\n    return this;\n  }\n\n  sortColumns(compareFunction = compareNumbers) {\n    for (let i = 0; i < this.columns; i++) {\n      this.setColumn(i, this.getColumn(i).sort(compareFunction));\n    }\n    return this;\n  }\n\n  subMatrix(startRow, endRow, startColumn, endColumn) {\n    checkRange(this, startRow, endRow, startColumn, endColumn);\n    let newMatrix = new Matrix(\n      endRow - startRow + 1,\n      endColumn - startColumn + 1,\n    );\n    for (let i = startRow; i <= endRow; i++) {\n      for (let j = startColumn; j <= endColumn; j++) {\n        newMatrix.set(i - startRow, j - startColumn, this.get(i, j));\n      }\n    }\n    return newMatrix;\n  }\n\n  subMatrixRow(indices, startColumn, endColumn) {\n    if (startColumn === undefined) startColumn = 0;\n    if (endColumn === undefined) endColumn = this.columns - 1;\n    if (\n      startColumn > endColumn ||\n      startColumn < 0 ||\n      startColumn >= this.columns ||\n      endColumn < 0 ||\n      endColumn >= this.columns\n    ) {\n      throw new RangeError('Argument out of range');\n    }\n\n    let newMatrix = new Matrix(indices.length, endColumn - startColumn + 1);\n    for (let i = 0; i < indices.length; i++) {\n      for (let j = startColumn; j <= endColumn; j++) {\n        if (indices[i] < 0 || indices[i] >= this.rows) {\n          throw new RangeError(`Row index out of range: ${indices[i]}`);\n        }\n        newMatrix.set(i, j - startColumn, this.get(indices[i], j));\n      }\n    }\n    return newMatrix;\n  }\n\n  subMatrixColumn(indices, startRow, endRow) {\n    if (startRow === undefined) startRow = 0;\n    if (endRow === undefined) endRow = this.rows - 1;\n    if (\n      startRow > endRow ||\n      startRow < 0 ||\n      startRow >= this.rows ||\n      endRow < 0 ||\n      endRow >= this.rows\n    ) {\n      throw new RangeError('Argument out of range');\n    }\n\n    let newMatrix = new Matrix(endRow - startRow + 1, indices.length);\n    for (let i = 0; i < indices.length; i++) {\n      for (let j = startRow; j <= endRow; j++) {\n        if (indices[i] < 0 || indices[i] >= this.columns) {\n          throw new RangeError(`Column index out of range: ${indices[i]}`);\n        }\n        newMatrix.set(j - startRow, i, this.get(j, indices[i]));\n      }\n    }\n    return newMatrix;\n  }\n\n  setSubMatrix(matrix, startRow, startColumn) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (matrix.isEmpty()) {\n      return this;\n    }\n    let endRow = startRow + matrix.rows - 1;\n    let endColumn = startColumn + matrix.columns - 1;\n    checkRange(this, startRow, endRow, startColumn, endColumn);\n    for (let i = 0; i < matrix.rows; i++) {\n      for (let j = 0; j < matrix.columns; j++) {\n        this.set(startRow + i, startColumn + j, matrix.get(i, j));\n      }\n    }\n    return this;\n  }\n\n  selection(rowIndices, columnIndices) {\n    let indices = checkIndices(this, rowIndices, columnIndices);\n    let newMatrix = new Matrix(rowIndices.length, columnIndices.length);\n    for (let i = 0; i < indices.row.length; i++) {\n      let rowIndex = indices.row[i];\n      for (let j = 0; j < indices.column.length; j++) {\n        let columnIndex = indices.column[j];\n        newMatrix.set(i, j, this.get(rowIndex, columnIndex));\n      }\n    }\n    return newMatrix;\n  }\n\n  trace() {\n    let min = Math.min(this.rows, this.columns);\n    let trace = 0;\n    for (let i = 0; i < min; i++) {\n      trace += this.get(i, i);\n    }\n    return trace;\n  }\n\n  clone() {\n    let newMatrix = new Matrix(this.rows, this.columns);\n    for (let row = 0; row < this.rows; row++) {\n      for (let column = 0; column < this.columns; column++) {\n        newMatrix.set(row, column, this.get(row, column));\n      }\n    }\n    return newMatrix;\n  }\n\n  sum(by) {\n    switch (by) {\n      case 'row':\n        return sumByRow(this);\n      case 'column':\n        return sumByColumn(this);\n      case undefined:\n        return sumAll(this);\n      default:\n        throw new Error(`invalid option: ${by}`);\n    }\n  }\n\n  product(by) {\n    switch (by) {\n      case 'row':\n        return productByRow(this);\n      case 'column':\n        return productByColumn(this);\n      case undefined:\n        return productAll(this);\n      default:\n        throw new Error(`invalid option: ${by}`);\n    }\n  }\n\n  mean(by) {\n    const sum = this.sum(by);\n    switch (by) {\n      case 'row': {\n        for (let i = 0; i < this.rows; i++) {\n          sum[i] /= this.columns;\n        }\n        return sum;\n      }\n      case 'column': {\n        for (let i = 0; i < this.columns; i++) {\n          sum[i] /= this.rows;\n        }\n        return sum;\n      }\n      case undefined:\n        return sum / this.size;\n      default:\n        throw new Error(`invalid option: ${by}`);\n    }\n  }\n\n  variance(by, options = {}) {\n    if (typeof by === 'object') {\n      options = by;\n      by = undefined;\n    }\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { unbiased = true, mean = this.mean(by) } = options;\n    if (typeof unbiased !== 'boolean') {\n      throw new TypeError('unbiased must be a boolean');\n    }\n    switch (by) {\n      case 'row': {\n        if (!Array.isArray(mean)) {\n          throw new TypeError('mean must be an array');\n        }\n        return varianceByRow(this, unbiased, mean);\n      }\n      case 'column': {\n        if (!Array.isArray(mean)) {\n          throw new TypeError('mean must be an array');\n        }\n        return varianceByColumn(this, unbiased, mean);\n      }\n      case undefined: {\n        if (typeof mean !== 'number') {\n          throw new TypeError('mean must be a number');\n        }\n        return varianceAll(this, unbiased, mean);\n      }\n      default:\n        throw new Error(`invalid option: ${by}`);\n    }\n  }\n\n  standardDeviation(by, options) {\n    if (typeof by === 'object') {\n      options = by;\n      by = undefined;\n    }\n    const variance = this.variance(by, options);\n    if (by === undefined) {\n      return Math.sqrt(variance);\n    } else {\n      for (let i = 0; i < variance.length; i++) {\n        variance[i] = Math.sqrt(variance[i]);\n      }\n      return variance;\n    }\n  }\n\n  center(by, options = {}) {\n    if (typeof by === 'object') {\n      options = by;\n      by = undefined;\n    }\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    const { center = this.mean(by) } = options;\n    switch (by) {\n      case 'row': {\n        if (!Array.isArray(center)) {\n          throw new TypeError('center must be an array');\n        }\n        centerByRow(this, center);\n        return this;\n      }\n      case 'column': {\n        if (!Array.isArray(center)) {\n          throw new TypeError('center must be an array');\n        }\n        centerByColumn(this, center);\n        return this;\n      }\n      case undefined: {\n        if (typeof center !== 'number') {\n          throw new TypeError('center must be a number');\n        }\n        centerAll(this, center);\n        return this;\n      }\n      default:\n        throw new Error(`invalid option: ${by}`);\n    }\n  }\n\n  scale(by, options = {}) {\n    if (typeof by === 'object') {\n      options = by;\n      by = undefined;\n    }\n    if (typeof options !== 'object') {\n      throw new TypeError('options must be an object');\n    }\n    let scale = options.scale;\n    switch (by) {\n      case 'row': {\n        if (scale === undefined) {\n          scale = getScaleByRow(this);\n        } else if (!Array.isArray(scale)) {\n          throw new TypeError('scale must be an array');\n        }\n        scaleByRow(this, scale);\n        return this;\n      }\n      case 'column': {\n        if (scale === undefined) {\n          scale = getScaleByColumn(this);\n        } else if (!Array.isArray(scale)) {\n          throw new TypeError('scale must be an array');\n        }\n        scaleByColumn(this, scale);\n        return this;\n      }\n      case undefined: {\n        if (scale === undefined) {\n          scale = getScaleAll(this);\n        } else if (typeof scale !== 'number') {\n          throw new TypeError('scale must be a number');\n        }\n        scaleAll(this, scale);\n        return this;\n      }\n      default:\n        throw new Error(`invalid option: ${by}`);\n    }\n  }\n\n  toString(options) {\n    return inspectMatrixWithOptions(this, options);\n  }\n}\n\nAbstractMatrix.prototype.klass = 'Matrix';\nif (typeof Symbol !== 'undefined') {\n  AbstractMatrix.prototype[\n    Symbol.for('nodejs.util.inspect.custom')\n  ] = inspectMatrix;\n}\n\nfunction compareNumbers(a, b) {\n  return a - b;\n}\n\n// Synonyms\nAbstractMatrix.random = AbstractMatrix.rand;\nAbstractMatrix.randomInt = AbstractMatrix.randInt;\nAbstractMatrix.diagonal = AbstractMatrix.diag;\nAbstractMatrix.prototype.diagonal = AbstractMatrix.prototype.diag;\nAbstractMatrix.identity = AbstractMatrix.eye;\nAbstractMatrix.prototype.negate = AbstractMatrix.prototype.neg;\nAbstractMatrix.prototype.tensorProduct =\n  AbstractMatrix.prototype.kroneckerProduct;\n\nexport default class Matrix extends AbstractMatrix {\n  constructor(nRows, nColumns) {\n    super();\n    if (Matrix.isMatrix(nRows)) {\n      // eslint-disable-next-line no-constructor-return\n      return nRows.clone();\n    } else if (Number.isInteger(nRows) && nRows >= 0) {\n      // Create an empty matrix\n      this.data = [];\n      if (Number.isInteger(nColumns) && nColumns >= 0) {\n        for (let i = 0; i < nRows; i++) {\n          this.data.push(new Float64Array(nColumns));\n        }\n      } else {\n        throw new TypeError('nColumns must be a positive integer');\n      }\n    } else if (Array.isArray(nRows)) {\n      // Copy the values from the 2D array\n      const arrayData = nRows;\n      nRows = arrayData.length;\n      nColumns = nRows ? arrayData[0].length : 0;\n      if (typeof nColumns !== 'number') {\n        throw new TypeError(\n          'Data must be a 2D array with at least one element',\n        );\n      }\n      this.data = [];\n      for (let i = 0; i < nRows; i++) {\n        if (arrayData[i].length !== nColumns) {\n          throw new RangeError('Inconsistent array dimensions');\n        }\n        this.data.push(Float64Array.from(arrayData[i]));\n      }\n    } else {\n      throw new TypeError(\n        'First argument must be a positive number or an array',\n      );\n    }\n    this.rows = nRows;\n    this.columns = nColumns;\n  }\n\n  set(rowIndex, columnIndex, value) {\n    this.data[rowIndex][columnIndex] = value;\n    return this;\n  }\n\n  get(rowIndex, columnIndex) {\n    return this.data[rowIndex][columnIndex];\n  }\n\n  removeRow(index) {\n    checkRowIndex(this, index);\n    this.data.splice(index, 1);\n    this.rows -= 1;\n    return this;\n  }\n\n  addRow(index, array) {\n    if (array === undefined) {\n      array = index;\n      index = this.rows;\n    }\n    checkRowIndex(this, index, true);\n    array = Float64Array.from(checkRowVector(this, array));\n    this.data.splice(index, 0, array);\n    this.rows += 1;\n    return this;\n  }\n\n  removeColumn(index) {\n    checkColumnIndex(this, index);\n    for (let i = 0; i < this.rows; i++) {\n      const newRow = new Float64Array(this.columns - 1);\n      for (let j = 0; j < index; j++) {\n        newRow[j] = this.data[i][j];\n      }\n      for (let j = index + 1; j < this.columns; j++) {\n        newRow[j - 1] = this.data[i][j];\n      }\n      this.data[i] = newRow;\n    }\n    this.columns -= 1;\n    return this;\n  }\n\n  addColumn(index, array) {\n    if (typeof array === 'undefined') {\n      array = index;\n      index = this.columns;\n    }\n    checkColumnIndex(this, index, true);\n    array = checkColumnVector(this, array);\n    for (let i = 0; i < this.rows; i++) {\n      const newRow = new Float64Array(this.columns + 1);\n      let j = 0;\n      for (; j < index; j++) {\n        newRow[j] = this.data[i][j];\n      }\n      newRow[j++] = array[i];\n      for (; j < this.columns + 1; j++) {\n        newRow[j] = this.data[i][j - 1];\n      }\n      this.data[i] = newRow;\n    }\n    this.columns += 1;\n    return this;\n  }\n}\n\ninstallMathOperations(AbstractMatrix, Matrix);\n","import { newArray } from './util';\n\nexport function sumByRow(matrix) {\n  let sum = newArray(matrix.rows);\n  for (let i = 0; i < matrix.rows; ++i) {\n    for (let j = 0; j < matrix.columns; ++j) {\n      sum[i] += matrix.get(i, j);\n    }\n  }\n  return sum;\n}\n\nexport function sumByColumn(matrix) {\n  let sum = newArray(matrix.columns);\n  for (let i = 0; i < matrix.rows; ++i) {\n    for (let j = 0; j < matrix.columns; ++j) {\n      sum[j] += matrix.get(i, j);\n    }\n  }\n  return sum;\n}\n\nexport function sumAll(matrix) {\n  let v = 0;\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      v += matrix.get(i, j);\n    }\n  }\n  return v;\n}\n\nexport function productByRow(matrix) {\n  let sum = newArray(matrix.rows, 1);\n  for (let i = 0; i < matrix.rows; ++i) {\n    for (let j = 0; j < matrix.columns; ++j) {\n      sum[i] *= matrix.get(i, j);\n    }\n  }\n  return sum;\n}\n\nexport function productByColumn(matrix) {\n  let sum = newArray(matrix.columns, 1);\n  for (let i = 0; i < matrix.rows; ++i) {\n    for (let j = 0; j < matrix.columns; ++j) {\n      sum[j] *= matrix.get(i, j);\n    }\n  }\n  return sum;\n}\n\nexport function productAll(matrix) {\n  let v = 1;\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      v *= matrix.get(i, j);\n    }\n  }\n  return v;\n}\n\nexport function varianceByRow(matrix, unbiased, mean) {\n  const rows = matrix.rows;\n  const cols = matrix.columns;\n  const variance = [];\n\n  for (let i = 0; i < rows; i++) {\n    let sum1 = 0;\n    let sum2 = 0;\n    let x = 0;\n    for (let j = 0; j < cols; j++) {\n      x = matrix.get(i, j) - mean[i];\n      sum1 += x;\n      sum2 += x * x;\n    }\n    if (unbiased) {\n      variance.push((sum2 - (sum1 * sum1) / cols) / (cols - 1));\n    } else {\n      variance.push((sum2 - (sum1 * sum1) / cols) / cols);\n    }\n  }\n  return variance;\n}\n\nexport function varianceByColumn(matrix, unbiased, mean) {\n  const rows = matrix.rows;\n  const cols = matrix.columns;\n  const variance = [];\n\n  for (let j = 0; j < cols; j++) {\n    let sum1 = 0;\n    let sum2 = 0;\n    let x = 0;\n    for (let i = 0; i < rows; i++) {\n      x = matrix.get(i, j) - mean[j];\n      sum1 += x;\n      sum2 += x * x;\n    }\n    if (unbiased) {\n      variance.push((sum2 - (sum1 * sum1) / rows) / (rows - 1));\n    } else {\n      variance.push((sum2 - (sum1 * sum1) / rows) / rows);\n    }\n  }\n  return variance;\n}\n\nexport function varianceAll(matrix, unbiased, mean) {\n  const rows = matrix.rows;\n  const cols = matrix.columns;\n  const size = rows * cols;\n\n  let sum1 = 0;\n  let sum2 = 0;\n  let x = 0;\n  for (let i = 0; i < rows; i++) {\n    for (let j = 0; j < cols; j++) {\n      x = matrix.get(i, j) - mean;\n      sum1 += x;\n      sum2 += x * x;\n    }\n  }\n  if (unbiased) {\n    return (sum2 - (sum1 * sum1) / size) / (size - 1);\n  } else {\n    return (sum2 - (sum1 * sum1) / size) / size;\n  }\n}\n\nexport function centerByRow(matrix, mean) {\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      matrix.set(i, j, matrix.get(i, j) - mean[i]);\n    }\n  }\n}\n\nexport function centerByColumn(matrix, mean) {\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      matrix.set(i, j, matrix.get(i, j) - mean[j]);\n    }\n  }\n}\n\nexport function centerAll(matrix, mean) {\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      matrix.set(i, j, matrix.get(i, j) - mean);\n    }\n  }\n}\n\nexport function getScaleByRow(matrix) {\n  const scale = [];\n  for (let i = 0; i < matrix.rows; i++) {\n    let sum = 0;\n    for (let j = 0; j < matrix.columns; j++) {\n      sum += Math.pow(matrix.get(i, j), 2) / (matrix.columns - 1);\n    }\n    scale.push(Math.sqrt(sum));\n  }\n  return scale;\n}\n\nexport function scaleByRow(matrix, scale) {\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      matrix.set(i, j, matrix.get(i, j) / scale[i]);\n    }\n  }\n}\n\nexport function getScaleByColumn(matrix) {\n  const scale = [];\n  for (let j = 0; j < matrix.columns; j++) {\n    let sum = 0;\n    for (let i = 0; i < matrix.rows; i++) {\n      sum += Math.pow(matrix.get(i, j), 2) / (matrix.rows - 1);\n    }\n    scale.push(Math.sqrt(sum));\n  }\n  return scale;\n}\n\nexport function scaleByColumn(matrix, scale) {\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      matrix.set(i, j, matrix.get(i, j) / scale[j]);\n    }\n  }\n}\n\nexport function getScaleAll(matrix) {\n  const divider = matrix.size - 1;\n  let sum = 0;\n  for (let j = 0; j < matrix.columns; j++) {\n    for (let i = 0; i < matrix.rows; i++) {\n      sum += Math.pow(matrix.get(i, j), 2) / divider;\n    }\n  }\n  return Math.sqrt(sum);\n}\n\nexport function scaleAll(matrix, scale) {\n  for (let i = 0; i < matrix.rows; i++) {\n    for (let j = 0; j < matrix.columns; j++) {\n      matrix.set(i, j, matrix.get(i, j) / scale);\n    }\n  }\n}\n","export function installMathOperations(AbstractMatrix, Matrix) {\n  AbstractMatrix.prototype.add = function add(value) {\n    if (typeof value === 'number') return this.addS(value);\n    return this.addM(value);\n  };\n\n  AbstractMatrix.prototype.addS = function addS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) + value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.addM = function addM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) + matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.add = function add(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.add(value);\n  };\n\n  AbstractMatrix.prototype.sub = function sub(value) {\n    if (typeof value === 'number') return this.subS(value);\n    return this.subM(value);\n  };\n\n  AbstractMatrix.prototype.subS = function subS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) - value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.subM = function subM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) - matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.sub = function sub(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.sub(value);\n  };\n  AbstractMatrix.prototype.subtract = AbstractMatrix.prototype.sub;\n  AbstractMatrix.prototype.subtractS = AbstractMatrix.prototype.subS;\n  AbstractMatrix.prototype.subtractM = AbstractMatrix.prototype.subM;\n  AbstractMatrix.subtract = AbstractMatrix.sub;\n\n  AbstractMatrix.prototype.mul = function mul(value) {\n    if (typeof value === 'number') return this.mulS(value);\n    return this.mulM(value);\n  };\n\n  AbstractMatrix.prototype.mulS = function mulS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) * value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.mulM = function mulM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) * matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.mul = function mul(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.mul(value);\n  };\n  AbstractMatrix.prototype.multiply = AbstractMatrix.prototype.mul;\n  AbstractMatrix.prototype.multiplyS = AbstractMatrix.prototype.mulS;\n  AbstractMatrix.prototype.multiplyM = AbstractMatrix.prototype.mulM;\n  AbstractMatrix.multiply = AbstractMatrix.mul;\n\n  AbstractMatrix.prototype.div = function div(value) {\n    if (typeof value === 'number') return this.divS(value);\n    return this.divM(value);\n  };\n\n  AbstractMatrix.prototype.divS = function divS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) / value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.divM = function divM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) / matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.div = function div(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.div(value);\n  };\n  AbstractMatrix.prototype.divide = AbstractMatrix.prototype.div;\n  AbstractMatrix.prototype.divideS = AbstractMatrix.prototype.divS;\n  AbstractMatrix.prototype.divideM = AbstractMatrix.prototype.divM;\n  AbstractMatrix.divide = AbstractMatrix.div;\n\n  AbstractMatrix.prototype.mod = function mod(value) {\n    if (typeof value === 'number') return this.modS(value);\n    return this.modM(value);\n  };\n\n  AbstractMatrix.prototype.modS = function modS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) % value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.modM = function modM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) % matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.mod = function mod(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.mod(value);\n  };\n  AbstractMatrix.prototype.modulus = AbstractMatrix.prototype.mod;\n  AbstractMatrix.prototype.modulusS = AbstractMatrix.prototype.modS;\n  AbstractMatrix.prototype.modulusM = AbstractMatrix.prototype.modM;\n  AbstractMatrix.modulus = AbstractMatrix.mod;\n\n  AbstractMatrix.prototype.and = function and(value) {\n    if (typeof value === 'number') return this.andS(value);\n    return this.andM(value);\n  };\n\n  AbstractMatrix.prototype.andS = function andS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) & value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.andM = function andM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) & matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.and = function and(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.and(value);\n  };\n\n  AbstractMatrix.prototype.or = function or(value) {\n    if (typeof value === 'number') return this.orS(value);\n    return this.orM(value);\n  };\n\n  AbstractMatrix.prototype.orS = function orS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) | value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.orM = function orM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) | matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.or = function or(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.or(value);\n  };\n\n  AbstractMatrix.prototype.xor = function xor(value) {\n    if (typeof value === 'number') return this.xorS(value);\n    return this.xorM(value);\n  };\n\n  AbstractMatrix.prototype.xorS = function xorS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) ^ value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.xorM = function xorM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) ^ matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.xor = function xor(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.xor(value);\n  };\n\n  AbstractMatrix.prototype.leftShift = function leftShift(value) {\n    if (typeof value === 'number') return this.leftShiftS(value);\n    return this.leftShiftM(value);\n  };\n\n  AbstractMatrix.prototype.leftShiftS = function leftShiftS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) << value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.leftShiftM = function leftShiftM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) << matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.leftShift = function leftShift(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.leftShift(value);\n  };\n\n  AbstractMatrix.prototype.signPropagatingRightShift = function signPropagatingRightShift(value) {\n    if (typeof value === 'number') return this.signPropagatingRightShiftS(value);\n    return this.signPropagatingRightShiftM(value);\n  };\n\n  AbstractMatrix.prototype.signPropagatingRightShiftS = function signPropagatingRightShiftS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) >> value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.signPropagatingRightShiftM = function signPropagatingRightShiftM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) >> matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.signPropagatingRightShift = function signPropagatingRightShift(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.signPropagatingRightShift(value);\n  };\n\n  AbstractMatrix.prototype.rightShift = function rightShift(value) {\n    if (typeof value === 'number') return this.rightShiftS(value);\n    return this.rightShiftM(value);\n  };\n\n  AbstractMatrix.prototype.rightShiftS = function rightShiftS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) >>> value);\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.rightShiftM = function rightShiftM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, this.get(i, j) >>> matrix.get(i, j));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.rightShift = function rightShift(matrix, value) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.rightShift(value);\n  };\n  AbstractMatrix.prototype.zeroFillRightShift = AbstractMatrix.prototype.rightShift;\n  AbstractMatrix.prototype.zeroFillRightShiftS = AbstractMatrix.prototype.rightShiftS;\n  AbstractMatrix.prototype.zeroFillRightShiftM = AbstractMatrix.prototype.rightShiftM;\n  AbstractMatrix.zeroFillRightShift = AbstractMatrix.rightShift;\n\n  AbstractMatrix.prototype.not = function not() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, ~(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.not = function not(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.not();\n  };\n\n  AbstractMatrix.prototype.abs = function abs() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.abs(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.abs = function abs(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.abs();\n  };\n\n  AbstractMatrix.prototype.acos = function acos() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.acos(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.acos = function acos(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.acos();\n  };\n\n  AbstractMatrix.prototype.acosh = function acosh() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.acosh(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.acosh = function acosh(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.acosh();\n  };\n\n  AbstractMatrix.prototype.asin = function asin() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.asin(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.asin = function asin(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.asin();\n  };\n\n  AbstractMatrix.prototype.asinh = function asinh() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.asinh(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.asinh = function asinh(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.asinh();\n  };\n\n  AbstractMatrix.prototype.atan = function atan() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.atan(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.atan = function atan(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.atan();\n  };\n\n  AbstractMatrix.prototype.atanh = function atanh() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.atanh(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.atanh = function atanh(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.atanh();\n  };\n\n  AbstractMatrix.prototype.cbrt = function cbrt() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.cbrt(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.cbrt = function cbrt(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.cbrt();\n  };\n\n  AbstractMatrix.prototype.ceil = function ceil() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.ceil(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.ceil = function ceil(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.ceil();\n  };\n\n  AbstractMatrix.prototype.clz32 = function clz32() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.clz32(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.clz32 = function clz32(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.clz32();\n  };\n\n  AbstractMatrix.prototype.cos = function cos() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.cos(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.cos = function cos(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.cos();\n  };\n\n  AbstractMatrix.prototype.cosh = function cosh() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.cosh(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.cosh = function cosh(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.cosh();\n  };\n\n  AbstractMatrix.prototype.exp = function exp() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.exp(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.exp = function exp(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.exp();\n  };\n\n  AbstractMatrix.prototype.expm1 = function expm1() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.expm1(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.expm1 = function expm1(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.expm1();\n  };\n\n  AbstractMatrix.prototype.floor = function floor() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.floor(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.floor = function floor(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.floor();\n  };\n\n  AbstractMatrix.prototype.fround = function fround() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.fround(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.fround = function fround(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.fround();\n  };\n\n  AbstractMatrix.prototype.log = function log() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.log(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.log = function log(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.log();\n  };\n\n  AbstractMatrix.prototype.log1p = function log1p() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.log1p(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.log1p = function log1p(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.log1p();\n  };\n\n  AbstractMatrix.prototype.log10 = function log10() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.log10(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.log10 = function log10(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.log10();\n  };\n\n  AbstractMatrix.prototype.log2 = function log2() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.log2(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.log2 = function log2(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.log2();\n  };\n\n  AbstractMatrix.prototype.round = function round() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.round(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.round = function round(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.round();\n  };\n\n  AbstractMatrix.prototype.sign = function sign() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.sign(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.sign = function sign(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.sign();\n  };\n\n  AbstractMatrix.prototype.sin = function sin() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.sin(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.sin = function sin(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.sin();\n  };\n\n  AbstractMatrix.prototype.sinh = function sinh() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.sinh(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.sinh = function sinh(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.sinh();\n  };\n\n  AbstractMatrix.prototype.sqrt = function sqrt() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.sqrt(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.sqrt = function sqrt(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.sqrt();\n  };\n\n  AbstractMatrix.prototype.tan = function tan() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.tan(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.tan = function tan(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.tan();\n  };\n\n  AbstractMatrix.prototype.tanh = function tanh() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.tanh(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.tanh = function tanh(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.tanh();\n  };\n\n  AbstractMatrix.prototype.trunc = function trunc() {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.trunc(this.get(i, j)));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.trunc = function trunc(matrix) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.trunc();\n  };\n\n  AbstractMatrix.pow = function pow(matrix, arg0) {\n    const newMatrix = new Matrix(matrix);\n    return newMatrix.pow(arg0);\n  };\n\n  AbstractMatrix.prototype.pow = function pow(value) {\n    if (typeof value === 'number') return this.powS(value);\n    return this.powM(value);\n  };\n\n  AbstractMatrix.prototype.powS = function powS(value) {\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.pow(this.get(i, j), value));\n      }\n    }\n    return this;\n  };\n\n  AbstractMatrix.prototype.powM = function powM(matrix) {\n    matrix = Matrix.checkMatrix(matrix);\n    if (this.rows !== matrix.rows ||\n      this.columns !== matrix.columns) {\n      throw new RangeError('Matrices dimensions must be equal');\n    }\n    for (let i = 0; i < this.rows; i++) {\n      for (let j = 0; j < this.columns; j++) {\n        this.set(i, j, Math.pow(this.get(i, j), matrix.get(i, j)));\n      }\n    }\n    return this;\n  };\n}\n","import { AbstractMatrix } from '../matrix';\n\nexport default class WrapperMatrix2D extends AbstractMatrix {\n  constructor(data) {\n    super();\n    this.data = data;\n    this.rows = data.length;\n    this.columns = data[0].length;\n  }\n\n  set(rowIndex, columnIndex, value) {\n    this.data[rowIndex][columnIndex] = value;\n    return this;\n  }\n\n  get(rowIndex, columnIndex) {\n    return this.data[rowIndex][columnIndex];\n  }\n}\n","import Matrix from '../matrix';\nimport WrapperMatrix2D from '../wrap/WrapperMatrix2D';\n\nexport default class LuDecomposition {\n  constructor(matrix) {\n    matrix = WrapperMatrix2D.checkMatrix(matrix);\n\n    let lu = matrix.clone();\n    let rows = lu.rows;\n    let columns = lu.columns;\n    let pivotVector = new Float64Array(rows);\n    let pivotSign = 1;\n    let i, j, k, p, s, t, v;\n    let LUcolj, kmax;\n\n    for (i = 0; i < rows; i++) {\n      pivotVector[i] = i;\n    }\n\n    LUcolj = new Float64Array(rows);\n\n    for (j = 0; j < columns; j++) {\n      for (i = 0; i < rows; i++) {\n        LUcolj[i] = lu.get(i, j);\n      }\n\n      for (i = 0; i < rows; i++) {\n        kmax = Math.min(i, j);\n        s = 0;\n        for (k = 0; k < kmax; k++) {\n          s += lu.get(i, k) * LUcolj[k];\n        }\n        LUcolj[i] -= s;\n        lu.set(i, j, LUcolj[i]);\n      }\n\n      p = j;\n      for (i = j + 1; i < rows; i++) {\n        if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {\n          p = i;\n        }\n      }\n\n      if (p !== j) {\n        for (k = 0; k < columns; k++) {\n          t = lu.get(p, k);\n          lu.set(p, k, lu.get(j, k));\n          lu.set(j, k, t);\n        }\n\n        v = pivotVector[p];\n        pivotVector[p] = pivotVector[j];\n        pivotVector[j] = v;\n\n        pivotSign = -pivotSign;\n      }\n\n      if (j < rows && lu.get(j, j) !== 0) {\n        for (i = j + 1; i < rows; i++) {\n          lu.set(i, j, lu.get(i, j) / lu.get(j, j));\n        }\n      }\n    }\n\n    this.LU = lu;\n    this.pivotVector = pivotVector;\n    this.pivotSign = pivotSign;\n  }\n\n  isSingular() {\n    let data = this.LU;\n    let col = data.columns;\n    for (let j = 0; j < col; j++) {\n      if (data.get(j, j) === 0) {\n        return true;\n      }\n    }\n    return false;\n  }\n\n  solve(value) {\n    value = Matrix.checkMatrix(value);\n\n    let lu = this.LU;\n    let rows = lu.rows;\n\n    if (rows !== value.rows) {\n      throw new Error('Invalid matrix dimensions');\n    }\n    if (this.isSingular()) {\n      throw new Error('LU matrix is singular');\n    }\n\n    let count = value.columns;\n    let X = value.subMatrixRow(this.pivotVector, 0, count - 1);\n    let columns = lu.columns;\n    let i, j, k;\n\n    for (k = 0; k < columns; k++) {\n      for (i = k + 1; i < columns; i++) {\n        for (j = 0; j < count; j++) {\n          X.set(i, j, X.get(i, j) - X.get(k, j) * lu.get(i, k));\n        }\n      }\n    }\n    for (k = columns - 1; k >= 0; k--) {\n      for (j = 0; j < count; j++) {\n        X.set(k, j, X.get(k, j) / lu.get(k, k));\n      }\n      for (i = 0; i < k; i++) {\n        for (j = 0; j < count; j++) {\n          X.set(i, j, X.get(i, j) - X.get(k, j) * lu.get(i, k));\n        }\n      }\n    }\n    return X;\n  }\n\n  get determinant() {\n    let data = this.LU;\n    if (!data.isSquare()) {\n      throw new Error('Matrix must be square');\n    }\n    let determinant = this.pivotSign;\n    let col = data.columns;\n    for (let j = 0; j < col; j++) {\n      determinant *= data.get(j, j);\n    }\n    return determinant;\n  }\n\n  get lowerTriangularMatrix() {\n    let data = this.LU;\n    let rows = data.rows;\n    let columns = data.columns;\n    let X = new Matrix(rows, columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        if (i > j) {\n          X.set(i, j, data.get(i, j));\n        } else if (i === j) {\n          X.set(i, j, 1);\n        } else {\n          X.set(i, j, 0);\n        }\n      }\n    }\n    return X;\n  }\n\n  get upperTriangularMatrix() {\n    let data = this.LU;\n    let rows = data.rows;\n    let columns = data.columns;\n    let X = new Matrix(rows, columns);\n    for (let i = 0; i < rows; i++) {\n      for (let j = 0; j < columns; j++) {\n        if (i <= j) {\n          X.set(i, j, data.get(i, j));\n        } else {\n          X.set(i, j, 0);\n        }\n      }\n    }\n    return X;\n  }\n\n  get pivotPermutationVector() {\n    return Array.from(this.pivotVector);\n  }\n}\n","export function hypotenuse(a, b) {\n  let r = 0;\n  if (Math.abs(a) > Math.abs(b)) {\n    r = b / a;\n    return Math.abs(a) * Math.sqrt(1 + r * r);\n  }\n  if (b !== 0) {\n    r = a / b;\n    return Math.abs(b) * Math.sqrt(1 + r * r);\n  }\n  return 0;\n}\n","import Matrix from '../matrix';\nimport WrapperMatrix2D from '../wrap/WrapperMatrix2D';\n\nimport { hypotenuse } from './util';\n\nexport default class QrDecomposition {\n  constructor(value) {\n    value = WrapperMatrix2D.checkMatrix(value);\n\n    let qr = value.clone();\n    let m = value.rows;\n    let n = value.columns;\n    let rdiag = new Float64Array(n);\n    let i, j, k, s;\n\n    for (k = 0; k < n; k++) {\n      let nrm = 0;\n      for (i = k; i < m; i++) {\n        nrm = hypotenuse(nrm, qr.get(i, k));\n      }\n      if (nrm !== 0) {\n        if (qr.get(k, k) < 0) {\n          nrm = -nrm;\n        }\n        for (i = k; i < m; i++) {\n          qr.set(i, k, qr.get(i, k) / nrm);\n        }\n        qr.set(k, k, qr.get(k, k) + 1);\n        for (j = k + 1; j < n; j++) {\n          s = 0;\n          for (i = k; i < m; i++) {\n            s += qr.get(i, k) * qr.get(i, j);\n          }\n          s = -s / qr.get(k, k);\n          for (i = k; i < m; i++) {\n            qr.set(i, j, qr.get(i, j) + s * qr.get(i, k));\n          }\n        }\n      }\n      rdiag[k] = -nrm;\n    }\n\n    this.QR = qr;\n    this.Rdiag = rdiag;\n  }\n\n  solve(value) {\n    value = Matrix.checkMatrix(value);\n\n    let qr = this.QR;\n    let m = qr.rows;\n\n    if (value.rows !== m) {\n      throw new Error('Matrix row dimensions must agree');\n    }\n    if (!this.isFullRank()) {\n      throw new Error('Matrix is rank deficient');\n    }\n\n    let count = value.columns;\n    let X = value.clone();\n    let n = qr.columns;\n    let i, j, k, s;\n\n    for (k = 0; k < n; k++) {\n      for (j = 0; j < count; j++) {\n        s = 0;\n        for (i = k; i < m; i++) {\n          s += qr.get(i, k) * X.get(i, j);\n        }\n        s = -s / qr.get(k, k);\n        for (i = k; i < m; i++) {\n          X.set(i, j, X.get(i, j) + s * qr.get(i, k));\n        }\n      }\n    }\n    for (k = n - 1; k >= 0; k--) {\n      for (j = 0; j < count; j++) {\n        X.set(k, j, X.get(k, j) / this.Rdiag[k]);\n      }\n      for (i = 0; i < k; i++) {\n        for (j = 0; j < count; j++) {\n          X.set(i, j, X.get(i, j) - X.get(k, j) * qr.get(i, k));\n        }\n      }\n    }\n\n    return X.subMatrix(0, n - 1, 0, count - 1);\n  }\n\n  isFullRank() {\n    let columns = this.QR.columns;\n    for (let i = 0; i < columns; i++) {\n      if (this.Rdiag[i] === 0) {\n        return false;\n      }\n    }\n    return true;\n  }\n\n  get upperTriangularMatrix() {\n    let qr = this.QR;\n    let n = qr.columns;\n    let X = new Matrix(n, n);\n    let i, j;\n    for (i = 0; i < n; i++) {\n      for (j = 0; j < n; j++) {\n        if (i < j) {\n          X.set(i, j, qr.get(i, j));\n        } else if (i === j) {\n          X.set(i, j, this.Rdiag[i]);\n        } else {\n          X.set(i, j, 0);\n        }\n      }\n    }\n    return X;\n  }\n\n  get orthogonalMatrix() {\n    let qr = this.QR;\n    let rows = qr.rows;\n    let columns = qr.columns;\n    let X = new Matrix(rows, columns);\n    let i, j, k, s;\n\n    for (k = columns - 1; k >= 0; k--) {\n      for (i = 0; i < rows; i++) {\n        X.set(i, k, 0);\n      }\n      X.set(k, k, 1);\n      for (j = k; j < columns; j++) {\n        if (qr.get(k, k) !== 0) {\n          s = 0;\n          for (i = k; i < rows; i++) {\n            s += qr.get(i, k) * X.get(i, j);\n          }\n\n          s = -s / qr.get(k, k);\n\n          for (i = k; i < rows; i++) {\n            X.set(i, j, X.get(i, j) + s * qr.get(i, k));\n          }\n        }\n      }\n    }\n    return X;\n  }\n}\n","import Matrix from '../matrix';\nimport WrapperMatrix2D from '../wrap/WrapperMatrix2D';\n\nimport { hypotenuse } from './util';\n\nexport default class SingularValueDecomposition {\n  constructor(value, options = {}) {\n    value = WrapperMatrix2D.checkMatrix(value);\n\n    if (value.isEmpty()) {\n      throw new Error('Matrix must be non-empty');\n    }\n\n    let m = value.rows;\n    let n = value.columns;\n\n    const {\n      computeLeftSingularVectors = true,\n      computeRightSingularVectors = true,\n      autoTranspose = false,\n    } = options;\n\n    let wantu = Boolean(computeLeftSingularVectors);\n    let wantv = Boolean(computeRightSingularVectors);\n\n    let swapped = false;\n    let a;\n    if (m < n) {\n      if (!autoTranspose) {\n        a = value.clone();\n        // eslint-disable-next-line no-console\n        console.warn(\n          'Computing SVD on a matrix with more columns than rows. Consider enabling autoTranspose',\n        );\n      } else {\n        a = value.transpose();\n        m = a.rows;\n        n = a.columns;\n        swapped = true;\n        let aux = wantu;\n        wantu = wantv;\n        wantv = aux;\n      }\n    } else {\n      a = value.clone();\n    }\n\n    let nu = Math.min(m, n);\n    let ni = Math.min(m + 1, n);\n    let s = new Float64Array(ni);\n    let U = new Matrix(m, nu);\n    let V = new Matrix(n, n);\n\n    let e = new Float64Array(n);\n    let work = new Float64Array(m);\n\n    let si = new Float64Array(ni);\n    for (let i = 0; i < ni; i++) si[i] = i;\n\n    let nct = Math.min(m - 1, n);\n    let nrt = Math.max(0, Math.min(n - 2, m));\n    let mrc = Math.max(nct, nrt);\n\n    for (let k = 0; k < mrc; k++) {\n      if (k < nct) {\n        s[k] = 0;\n        for (let i = k; i < m; i++) {\n          s[k] = hypotenuse(s[k], a.get(i, k));\n        }\n        if (s[k] !== 0) {\n          if (a.get(k, k) < 0) {\n            s[k] = -s[k];\n          }\n          for (let i = k; i < m; i++) {\n            a.set(i, k, a.get(i, k) / s[k]);\n          }\n          a.set(k, k, a.get(k, k) + 1);\n        }\n        s[k] = -s[k];\n      }\n\n      for (let j = k + 1; j < n; j++) {\n        if (k < nct && s[k] !== 0) {\n          let t = 0;\n          for (let i = k; i < m; i++) {\n            t += a.get(i, k) * a.get(i, j);\n          }\n          t = -t / a.get(k, k);\n          for (let i = k; i < m; i++) {\n            a.set(i, j, a.get(i, j) + t * a.get(i, k));\n          }\n        }\n        e[j] = a.get(k, j);\n      }\n\n      if (wantu && k < nct) {\n        for (let i = k; i < m; i++) {\n          U.set(i, k, a.get(i, k));\n        }\n      }\n\n      if (k < nrt) {\n        e[k] = 0;\n        for (let i = k + 1; i < n; i++) {\n          e[k] = hypotenuse(e[k], e[i]);\n        }\n        if (e[k] !== 0) {\n          if (e[k + 1] < 0) {\n            e[k] = 0 - e[k];\n          }\n          for (let i = k + 1; i < n; i++) {\n            e[i] /= e[k];\n          }\n          e[k + 1] += 1;\n        }\n        e[k] = -e[k];\n        if (k + 1 < m && e[k] !== 0) {\n          for (let i = k + 1; i < m; i++) {\n            work[i] = 0;\n          }\n          for (let i = k + 1; i < m; i++) {\n            for (let j = k + 1; j < n; j++) {\n              work[i] += e[j] * a.get(i, j);\n            }\n          }\n          for (let j = k + 1; j < n; j++) {\n            let t = -e[j] / e[k + 1];\n            for (let i = k + 1; i < m; i++) {\n              a.set(i, j, a.get(i, j) + t * work[i]);\n            }\n          }\n        }\n        if (wantv) {\n          for (let i = k + 1; i < n; i++) {\n            V.set(i, k, e[i]);\n          }\n        }\n      }\n    }\n\n    let p = Math.min(n, m + 1);\n    if (nct < n) {\n      s[nct] = a.get(nct, nct);\n    }\n    if (m < p) {\n      s[p - 1] = 0;\n    }\n    if (nrt + 1 < p) {\n      e[nrt] = a.get(nrt, p - 1);\n    }\n    e[p - 1] = 0;\n\n    if (wantu) {\n      for (let j = nct; j < nu; j++) {\n        for (let i = 0; i < m; i++) {\n          U.set(i, j, 0);\n        }\n        U.set(j, j, 1);\n      }\n      for (let k = nct - 1; k >= 0; k--) {\n        if (s[k] !== 0) {\n          for (let j = k + 1; j < nu; j++) {\n            let t = 0;\n            for (let i = k; i < m; i++) {\n              t += U.get(i, k) * U.get(i, j);\n            }\n            t = -t / U.get(k, k);\n            for (let i = k; i < m; i++) {\n              U.set(i, j, U.get(i, j) + t * U.get(i, k));\n            }\n          }\n          for (let i = k; i < m; i++) {\n            U.set(i, k, -U.get(i, k));\n          }\n          U.set(k, k, 1 + U.get(k, k));\n          for (let i = 0; i < k - 1; i++) {\n            U.set(i, k, 0);\n          }\n        } else {\n          for (let i = 0; i < m; i++) {\n            U.set(i, k, 0);\n          }\n          U.set(k, k, 1);\n        }\n      }\n    }\n\n    if (wantv) {\n      for (let k = n - 1; k >= 0; k--) {\n        if (k < nrt && e[k] !== 0) {\n          for (let j = k + 1; j < n; j++) {\n            let t = 0;\n            for (let i = k + 1; i < n; i++) {\n              t += V.get(i, k) * V.get(i, j);\n            }\n            t = -t / V.get(k + 1, k);\n            for (let i = k + 1; i < n; i++) {\n              V.set(i, j, V.get(i, j) + t * V.get(i, k));\n            }\n          }\n        }\n        for (let i = 0; i < n; i++) {\n          V.set(i, k, 0);\n        }\n        V.set(k, k, 1);\n      }\n    }\n\n    let pp = p - 1;\n    let iter = 0;\n    let eps = Number.EPSILON;\n    while (p > 0) {\n      let k, kase;\n      for (k = p - 2; k >= -1; k--) {\n        if (k === -1) {\n          break;\n        }\n        const alpha =\n          Number.MIN_VALUE + eps * Math.abs(s[k] + Math.abs(s[k + 1]));\n        if (Math.abs(e[k]) <= alpha || Number.isNaN(e[k])) {\n          e[k] = 0;\n          break;\n        }\n      }\n      if (k === p - 2) {\n        kase = 4;\n      } else {\n        let ks;\n        for (ks = p - 1; ks >= k; ks--) {\n          if (ks === k) {\n            break;\n          }\n          let t =\n            (ks !== p ? Math.abs(e[ks]) : 0) +\n            (ks !== k + 1 ? Math.abs(e[ks - 1]) : 0);\n          if (Math.abs(s[ks]) <= eps * t) {\n            s[ks] = 0;\n            break;\n          }\n        }\n        if (ks === k) {\n          kase = 3;\n        } else if (ks === p - 1) {\n          kase = 1;\n        } else {\n          kase = 2;\n          k = ks;\n        }\n      }\n\n      k++;\n\n      switch (kase) {\n        case 1: {\n          let f = e[p - 2];\n          e[p - 2] = 0;\n          for (let j = p - 2; j >= k; j--) {\n            let t = hypotenuse(s[j], f);\n            let cs = s[j] / t;\n            let sn = f / t;\n            s[j] = t;\n            if (j !== k) {\n              f = -sn * e[j - 1];\n              e[j - 1] = cs * e[j - 1];\n            }\n            if (wantv) {\n              for (let i = 0; i < n; i++) {\n                t = cs * V.get(i, j) + sn * V.get(i, p - 1);\n                V.set(i, p - 1, -sn * V.get(i, j) + cs * V.get(i, p - 1));\n                V.set(i, j, t);\n              }\n            }\n          }\n          break;\n        }\n        case 2: {\n          let f = e[k - 1];\n          e[k - 1] = 0;\n          for (let j = k; j < p; j++) {\n            let t = hypotenuse(s[j], f);\n            let cs = s[j] / t;\n            let sn = f / t;\n            s[j] = t;\n            f = -sn * e[j];\n            e[j] = cs * e[j];\n            if (wantu) {\n              for (let i = 0; i < m; i++) {\n                t = cs * U.get(i, j) + sn * U.get(i, k - 1);\n                U.set(i, k - 1, -sn * U.get(i, j) + cs * U.get(i, k - 1));\n                U.set(i, j, t);\n              }\n            }\n          }\n          break;\n        }\n        case 3: {\n          const scale = Math.max(\n            Math.abs(s[p - 1]),\n            Math.abs(s[p - 2]),\n            Math.abs(e[p - 2]),\n            Math.abs(s[k]),\n            Math.abs(e[k]),\n          );\n          const sp = s[p - 1] / scale;\n          const spm1 = s[p - 2] / scale;\n          const epm1 = e[p - 2] / scale;\n          const sk = s[k] / scale;\n          const ek = e[k] / scale;\n          const b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2;\n          const c = sp * epm1 * (sp * epm1);\n          let shift = 0;\n          if (b !== 0 || c !== 0) {\n            if (b < 0) {\n              shift = 0 - Math.sqrt(b * b + c);\n            } else {\n              shift = Math.sqrt(b * b + c);\n            }\n            shift = c / (b + shift);\n          }\n          let f = (sk + sp) * (sk - sp) + shift;\n          let g = sk * ek;\n          for (let j = k; j < p - 1; j++) {\n            let t = hypotenuse(f, g);\n            if (t === 0) t = Number.MIN_VALUE;\n            let cs = f / t;\n            let sn = g / t;\n            if (j !== k) {\n              e[j - 1] = t;\n            }\n            f = cs * s[j] + sn * e[j];\n            e[j] = cs * e[j] - sn * s[j];\n            g = sn * s[j + 1];\n            s[j + 1] = cs * s[j + 1];\n            if (wantv) {\n              for (let i = 0; i < n; i++) {\n                t = cs * V.get(i, j) + sn * V.get(i, j + 1);\n                V.set(i, j + 1, -sn * V.get(i, j) + cs * V.get(i, j + 1));\n                V.set(i, j, t);\n              }\n            }\n            t = hypotenuse(f, g);\n            if (t === 0) t = Number.MIN_VALUE;\n            cs = f / t;\n            sn = g / t;\n            s[j] = t;\n            f = cs * e[j] + sn * s[j + 1];\n            s[j + 1] = -sn * e[j] + cs * s[j + 1];\n            g = sn * e[j + 1];\n            e[j + 1] = cs * e[j + 1];\n            if (wantu && j < m - 1) {\n              for (let i = 0; i < m; i++) {\n                t = cs * U.get(i, j) + sn * U.get(i, j + 1);\n                U.set(i, j + 1, -sn * U.get(i, j) + cs * U.get(i, j + 1));\n                U.set(i, j, t);\n              }\n            }\n          }\n          e[p - 2] = f;\n          iter = iter + 1;\n          break;\n        }\n        case 4: {\n          if (s[k] <= 0) {\n            s[k] = s[k] < 0 ? -s[k] : 0;\n            if (wantv) {\n              for (let i = 0; i <= pp; i++) {\n                V.set(i, k, -V.get(i, k));\n              }\n            }\n          }\n          while (k < pp) {\n            if (s[k] >= s[k + 1]) {\n              break;\n            }\n            let t = s[k];\n            s[k] = s[k + 1];\n            s[k + 1] = t;\n            if (wantv && k < n - 1) {\n              for (let i = 0; i < n; i++) {\n                t = V.get(i, k + 1);\n                V.set(i, k + 1, V.get(i, k));\n                V.set(i, k, t);\n              }\n            }\n            if (wantu && k < m - 1) {\n              for (let i = 0; i < m; i++) {\n                t = U.get(i, k + 1);\n                U.set(i, k + 1, U.get(i, k));\n                U.set(i, k, t);\n              }\n            }\n            k++;\n          }\n          iter = 0;\n          p--;\n          break;\n        }\n        // no default\n      }\n    }\n\n    if (swapped) {\n      let tmp = V;\n      V = U;\n      U = tmp;\n    }\n\n    this.m = m;\n    this.n = n;\n    this.s = s;\n    this.U = U;\n    this.V = V;\n  }\n\n  solve(value) {\n    let Y = value;\n    let e = this.threshold;\n    let scols = this.s.length;\n    let Ls = Matrix.zeros(scols, scols);\n\n    for (let i = 0; i < scols; i++) {\n      if (Math.abs(this.s[i]) <= e) {\n        Ls.set(i, i, 0);\n      } else {\n        Ls.set(i, i, 1 / this.s[i]);\n      }\n    }\n\n    let U = this.U;\n    let V = this.rightSingularVectors;\n\n    let VL = V.mmul(Ls);\n    let vrows = V.rows;\n    let urows = U.rows;\n    let VLU = Matrix.zeros(vrows, urows);\n\n    for (let i = 0; i < vrows; i++) {\n      for (let j = 0; j < urows; j++) {\n        let sum = 0;\n        for (let k = 0; k < scols; k++) {\n          sum += VL.get(i, k) * U.get(j, k);\n        }\n        VLU.set(i, j, sum);\n      }\n    }\n\n    return VLU.mmul(Y);\n  }\n\n  solveForDiagonal(value) {\n    return this.solve(Matrix.diag(value));\n  }\n\n  inverse() {\n    let V = this.V;\n    let e = this.threshold;\n    let vrows = V.rows;\n    let vcols = V.columns;\n    let X = new Matrix(vrows, this.s.length);\n\n    for (let i = 0; i < vrows; i++) {\n      for (let j = 0; j < vcols; j++) {\n        if (Math.abs(this.s[j]) > e) {\n          X.set(i, j, V.get(i, j) / this.s[j]);\n        }\n      }\n    }\n\n    let U = this.U;\n\n    let urows = U.rows;\n    let ucols = U.columns;\n    let Y = new Matrix(vrows, urows);\n\n    for (let i = 0; i < vrows; i++) {\n      for (let j = 0; j < urows; j++) {\n        let sum = 0;\n        for (let k = 0; k < ucols; k++) {\n          sum += X.get(i, k) * U.get(j, k);\n        }\n        Y.set(i, j, sum);\n      }\n    }\n\n    return Y;\n  }\n\n  get condition() {\n    return this.s[0] / this.s[Math.min(this.m, this.n) - 1];\n  }\n\n  get norm2() {\n    return this.s[0];\n  }\n\n  get rank() {\n    let tol = Math.max(this.m, this.n) * this.s[0] * Number.EPSILON;\n    let r = 0;\n    let s = this.s;\n    for (let i = 0, ii = s.length; i < ii; i++) {\n      if (s[i] > tol) {\n        r++;\n      }\n    }\n    return r;\n  }\n\n  get diagonal() {\n    return Array.from(this.s);\n  }\n\n  get threshold() {\n    return (Number.EPSILON / 2) * Math.max(this.m, this.n) * this.s[0];\n  }\n\n  get leftSingularVectors() {\n    return this.U;\n  }\n\n  get rightSingularVectors() {\n    return this.V;\n  }\n\n  get diagonalMatrix() {\n    return Matrix.diag(this.s);\n  }\n}\n","import LuDecomposition from './dc/lu';\nimport QrDecomposition from './dc/qr';\nimport SingularValueDecomposition from './dc/svd';\nimport Matrix from './matrix';\nimport WrapperMatrix2D from './wrap/WrapperMatrix2D';\n\nexport function inverse(matrix, useSVD = false) {\n  matrix = WrapperMatrix2D.checkMatrix(matrix);\n  if (useSVD) {\n    return new SingularValueDecomposition(matrix).inverse();\n  } else {\n    return solve(matrix, Matrix.eye(matrix.rows));\n  }\n}\n\nexport function solve(leftHandSide, rightHandSide, useSVD = false) {\n  leftHandSide = WrapperMatrix2D.checkMatrix(leftHandSide);\n  rightHandSide = WrapperMatrix2D.checkMatrix(rightHandSide);\n  if (useSVD) {\n    return new SingularValueDecomposition(leftHandSide).solve(rightHandSide);\n  } else {\n    return leftHandSide.isSquare()\n      ? new LuDecomposition(leftHandSide).solve(rightHandSide)\n      : new QrDecomposition(leftHandSide).solve(rightHandSide);\n  }\n}\n","import { inverse, Matrix } from 'ml-matrix';\n\nimport gradientFunction from './gradientFunction';\n\n/**\n * Matrix function over the samples\n * @ignore\n * @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]\n * @param {Array<number>} evaluatedData - Array of previous evaluated function values\n * @return {Matrix}\n */\nfunction matrixFunction(data, evaluatedData) {\n  const m = data.x.length;\n\n  let ans = new Matrix(m, 1);\n\n  for (let point = 0; point < m; point++) {\n    ans.set(point, 0, data.y[point] - evaluatedData[point]);\n  }\n  return ans;\n}\n\n/**\n * Iteration for Levenberg-Marquardt\n * @ignore\n * @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]\n * @param {Array<number>} params - Array of previous parameter values\n * @param {number} damping - Levenberg-Marquardt parameter\n * @param {number|array} gradientDifference - The step size to approximate the jacobian matrix\n * @param {boolean} centralDifference - If true the jacobian matrix is approximated by central differences otherwise by forward differences\n * @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter\n * @return {Array<number>}\n */\nexport default function step(\n  data,\n  params,\n  damping,\n  gradientDifference,\n  parameterizedFunction,\n  centralDifference,\n  weights,\n) {\n  let value = damping;\n  let identity = Matrix.eye(params.length, params.length, value);\n\n  const func = parameterizedFunction(params);\n\n  let evaluatedData = new Float64Array(data.x.length);\n  for (let i = 0; i < data.x.length; i++) {\n    evaluatedData[i] = func(data.x[i]);\n  }\n\n  let gradientFunc = gradientFunction(\n    data,\n    evaluatedData,\n    params,\n    gradientDifference,\n    parameterizedFunction,\n    centralDifference,\n  );\n  let residualError = matrixFunction(data, evaluatedData);\n\n  let inverseMatrix = inverse(\n    identity.add(\n      gradientFunc.mmul(\n        gradientFunc.transpose().scale('row', { scale: weights }),\n      ),\n    ),\n  );\n\n  let jacobianWeigthResidualError = gradientFunc.mmul(\n    residualError.scale('row', { scale: weights }),\n  );\n\n  let perturbations = inverseMatrix.mmul(jacobianWeigthResidualError);\n\n  return {\n    perturbations,\n    jacobianWeigthResidualError,\n  };\n}\n","import { Matrix } from 'ml-matrix';\n/**\n * Difference of the matrix function over the parameters\n * @ignore\n * @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]\n * @param {Array<number>} evaluatedData - Array of previous evaluated function values\n * @param {Array<number>} params - Array of previous parameter values\n * @param {number|array} gradientDifference - The step size to approximate the jacobian matrix\n * @param {boolean} centralDifference - If true the jacobian matrix is approximated by central differences otherwise by forward differences\n * @param {function} paramFunction - The parameters and returns a function with the independent variable as a parameter\n * @return {Matrix}\n */\n\nexport default function gradientFunction(\n  data,\n  evaluatedData,\n  params,\n  gradientDifference,\n  paramFunction,\n  centralDifference,\n) {\n  const nbParams = params.length;\n  const nbPoints = data.x.length;\n  let ans = Matrix.zeros(nbParams, nbPoints);\n\n  let rowIndex = 0;\n  for (let param = 0; param < nbParams; param++) {\n    if (gradientDifference[param] === 0) continue;\n    let delta = gradientDifference[param];\n    let auxParams = params.slice();\n    auxParams[param] += delta;\n    let funcParam = paramFunction(auxParams);\n    if (!centralDifference) {\n      for (let point = 0; point < nbPoints; point++) {\n        ans.set(\n          rowIndex,\n          point,\n          (evaluatedData[point] - funcParam(data.x[point])) / delta,\n        );\n      }\n    } else {\n      auxParams = params.slice();\n      auxParams[param] -= delta;\n      delta *= 2;\n      let funcParam2 = paramFunction(auxParams);\n      for (let point = 0; point < nbPoints; point++) {\n        ans.set(\n          rowIndex,\n          point,\n          (funcParam2(data.x[point]) - funcParam(data.x[point])) / delta,\n        );\n      }\n    }\n    rowIndex++;\n  }\n\n  return ans;\n}\n","import checkOptions from './checkOptions';\nimport errorCalculation from './errorCalculation';\nimport step from './step';\n\n/**\n * Curve fitting algorithm\n * @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]\n * @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter\n * @param {object} [options] - Options object\n * @param {number|array} [options.weights = 1] - weighting vector, if the length does not match with the number of data points, the vector is reconstructed with first value.\n * @param {number} [options.damping = 1e-2] - Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large\nvalues of λ result in a gradient descent update\n * @param {number} [options.dampingStepDown = 9] - factor to reduce the damping (Levenberg-Marquardt parameter) when there is not an improvement when updating parameters.\n * @param {number} [options.dampingStepUp = 11] - factor to increase the damping (Levenberg-Marquardt parameter) when there is an improvement when updating parameters.\n * @param {number} [options.improvementThreshold = 1e-3] - the threshold to define an improvement through an update of parameters\n * @param {number|array} [options.gradientDifference = 10e-2] - The step size to approximate the jacobian matrix\n * @param {boolean} [options.centralDifference = false] - If true the jacobian matrix is approximated by central differences otherwise by forward differences\n * @param {Array<number>} [options.minValues] - Minimum allowed values for parameters\n * @param {Array<number>} [options.maxValues] - Maximum allowed values for parameters\n * @param {Array<number>} [options.initialValues] - Array of initial parameter values\n * @param {number} [options.maxIterations = 100] - Maximum of allowed iterations\n * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point.\n * @param {number} [options.timeout] - maximum time running before throw in seconds.\n * @return {{parameterValues: Array<number>, parameterError: number, iterations: number}}\n */\nexport default function levenbergMarquardt(\n  data,\n  parameterizedFunction,\n  options = {},\n) {\n  let {\n    checkTimeout,\n    minValues,\n    maxValues,\n    parameters,\n    weightSquare,\n    damping,\n    dampingStepUp,\n    dampingStepDown,\n    maxIterations,\n    errorTolerance,\n    centralDifference,\n    gradientDifference,\n    improvementThreshold,\n  } = checkOptions(data, parameterizedFunction, options);\n\n  let error = errorCalculation(\n    data,\n    parameters,\n    parameterizedFunction,\n    weightSquare,\n  );\n\n  let converged = error <= errorTolerance;\n\n  let iteration = 0;\n  for (; iteration < maxIterations && !converged; iteration++) {\n    let previousError = error;\n\n    let { perturbations, jacobianWeigthResidualError } = step(\n      data,\n      parameters,\n      damping,\n      gradientDifference,\n      parameterizedFunction,\n      centralDifference,\n      weightSquare,\n    );\n\n    for (let k = 0; k < parameters.length; k++) {\n      parameters[k] = Math.min(\n        Math.max(minValues[k], parameters[k] - perturbations.get(k, 0)),\n        maxValues[k],\n      );\n    }\n\n    error = errorCalculation(\n      data,\n      parameters,\n      parameterizedFunction,\n      weightSquare,\n    );\n\n    if (isNaN(error)) break;\n\n    let improvementMetric =\n      (previousError - error) /\n      perturbations\n        .transpose()\n        .mmul(perturbations.mulS(damping).add(jacobianWeigthResidualError))\n        .get(0, 0);\n\n    if (improvementMetric > improvementThreshold) {\n      damping = Math.max(damping / dampingStepDown, 1e-7);\n    } else {\n      error = previousError;\n      damping = Math.min(damping * dampingStepUp, 1e7);\n    }\n\n    if (checkTimeout()) {\n      throw new Error(\n        `The execution time is over to ${options.timeout} seconds`,\n      );\n    }\n\n    converged = error <= errorTolerance;\n  }\n\n  return {\n    parameterValues: parameters,\n    parameterError: error,\n    iterations: iteration,\n  };\n}\n","import isArray from 'is-any-array';\n\nexport default function checkOptions(data, parameterizedFunction, options) {\n  let {\n    timeout,\n    minValues,\n    maxValues,\n    initialValues,\n    weights = 1,\n    damping = 1e-2,\n    dampingStepUp = 11,\n    dampingStepDown = 9,\n    maxIterations = 100,\n    errorTolerance = 1e-7,\n    centralDifference = false,\n    gradientDifference = 10e-2,\n    improvementThreshold = 1e-3,\n  } = options;\n\n  if (damping <= 0) {\n    throw new Error('The damping option must be a positive number');\n  } else if (!data.x || !data.y) {\n    throw new Error('The data parameter must have x and y elements');\n  } else if (\n    !isArray(data.x) ||\n    data.x.length < 2 ||\n    !isArray(data.y) ||\n    data.y.length < 2\n  ) {\n    throw new Error(\n      'The data parameter elements must be an array with more than 2 points',\n    );\n  } else if (data.x.length !== data.y.length) {\n    throw new Error('The data parameter elements must have the same size');\n  }\n\n  let parameters =\n    initialValues || new Array(parameterizedFunction.length).fill(1);\n\n  let nbPoints = data.y.length;\n  let parLen = parameters.length;\n  maxValues = maxValues || new Array(parLen).fill(Number.MAX_SAFE_INTEGER);\n  minValues = minValues || new Array(parLen).fill(Number.MIN_SAFE_INTEGER);\n\n  if (maxValues.length !== minValues.length) {\n    throw new Error('minValues and maxValues must be the same size');\n  }\n\n  if (!isArray(parameters)) {\n    throw new Error('initialValues must be an array');\n  }\n\n  if (typeof gradientDifference === 'number') {\n    gradientDifference = new Array(parameters.length).fill(gradientDifference);\n  } else if (isArray(gradientDifference)) {\n    if (gradientDifference.length !== parLen) {\n      gradientDifference = new Array(parLen).fill(gradientDifference[0]);\n    }\n  } else {\n    throw new Error(\n      'gradientDifference should be a number or array with length equal to the number of parameters',\n    );\n  }\n\n  let filler;\n  if (typeof weights === 'number') {\n    let value = 1 / weights ** 2;\n    filler = () => value;\n  } else if (isArray(weights)) {\n    if (weights.length < data.x.length) {\n      let value = 1 / weights[0] ** 2;\n      filler = () => value;\n    } else {\n      filler = (i) => 1 / weights[i] ** 2;\n    }\n  } else {\n    throw new Error(\n      'weights should be a number or array with length equal to the number of data points',\n    );\n  }\n\n  let checkTimeout;\n  if (timeout !== undefined) {\n    if (typeof timeout !== 'number') {\n      throw new Error('timeout should be a number');\n    }\n    let endTime = Date.now() + timeout * 1000;\n    checkTimeout = () => Date.now() > endTime;\n  } else {\n    checkTimeout = () => false;\n  }\n\n  let weightSquare = new Array(data.x.length);\n  for (let i = 0; i < nbPoints; i++) {\n    weightSquare[i] = filler(i);\n  }\n\n  return {\n    checkTimeout,\n    minValues,\n    maxValues,\n    parameters,\n    weightSquare,\n    damping,\n    dampingStepUp,\n    dampingStepDown,\n    maxIterations,\n    errorTolerance,\n    centralDifference,\n    gradientDifference,\n    improvementThreshold,\n  };\n}\n","import LM from 'ml-levenberg-marquardt';\n\nconst LEVENBERG_MARQUARDT = 1;\n\nexport function selectMethod(optimizationOptions = {}) {\n  let { kind, options } = optimizationOptions;\n  kind = getKind(kind);\n  switch (kind) {\n    case LEVENBERG_MARQUARDT:\n      return {\n        algorithm: LM,\n        optimizationOptions: checkOptions(kind, options),\n      };\n    default:\n      throw new Error(`Unknown kind algorithm`);\n  }\n}\n\nfunction checkOptions(kind, options = {}) {\n  // eslint-disable-next-line default-case\n  switch (kind) {\n    case LEVENBERG_MARQUARDT:\n      return Object.assign({}, lmOptions, options);\n  }\n}\n\nfunction getKind(kind) {\n  if (typeof kind !== 'string') return kind;\n  switch (kind.toLowerCase().replace(/[^a-z]/g, '')) {\n    case 'lm':\n    case 'levenbergmarquardt':\n      return LEVENBERG_MARQUARDT;\n    default:\n      throw new Error(`Unknown kind algorithm`);\n  }\n}\n\nconst lmOptions = {\n  damping: 1.5,\n  maxIterations: 100,\n  errorTolerance: 1e-8,\n};\n","export const GAUSSIAN_EXP_FACTOR = -4 * Math.LN2;\nexport const ROOT_PI_OVER_LN2 = Math.sqrt(Math.PI / Math.LN2);\nexport const ROOT_THREE = Math.sqrt(3);\nexport const ROOT_2LN2 = Math.sqrt(2 * Math.LN2);\nexport const ROOT_2LN2_MINUS_ONE = Math.sqrt(2 * Math.LN2) - 1;\n","import {\n  ROOT_2LN2,\n  GAUSSIAN_EXP_FACTOR,\n  ROOT_PI_OVER_LN2,\n} from '../util/constants';\nimport erfinv from '../util/erfinv';\n\nexport class Gaussian {\n  /**\n   * @param {object} [options = {}]\n   * @param {number} [options.height=x] Define the height of the peak, by default area=1 (normalized)\n   * @param {number} [options.fwhm = 500] - Full Width at Half Maximum in the number of points in FWHM.\n   * @param {number} [options.sd] - Standard deviation, if it's defined options.fwhm will be ignored and the value will be computed sd * Math.sqrt(8 * Math.LN2);\n   */\n  constructor(options = {}) {\n    this.fwhm = options.sd\n      ? Gaussian.widthToFWHM(2 * options.sd)\n      : options.fwhm\n      ? options.fwhm\n      : 500;\n    this.height =\n      options.height === undefined\n        ? Math.sqrt(-GAUSSIAN_EXP_FACTOR / Math.PI) / this.fwhm\n        : options.height;\n  }\n  /**\n   * Calculate a gaussian shape\n   * @param {object} [options = {}]\n   * @param {number} [options.factor = 6] - Number of time to take fwhm to calculate length. Default covers 99.99 % of area.\n   * @param {number} [options.length = fwhm * factor + 1] - total number of points to calculate\n   * @return {Float64Array} y values\n   */\n\n  getData(options = {}) {\n    let { length, factor = this.getFactor() } = options;\n\n    if (!length) {\n      length = Math.min(Math.ceil(this.fwhm * factor), Math.pow(2, 25) - 1);\n      if (length % 2 === 0) length++;\n    }\n\n    const center = (length - 1) / 2;\n    const data = new Float64Array(length);\n    for (let i = 0; i <= center; i++) {\n      data[i] = this.fct(i - center) * this.height;\n      data[length - 1 - i] = data[i];\n    }\n\n    return data;\n  }\n\n  /**\n   * Return a parameterized function of a gaussian shape (see README for equation).\n   * @param {number} x - x value to calculate.\n   * @returns {number} - the y value of gaussian with the current parameters.\n   */\n  fct(x) {\n    return Gaussian.fct(x, this.fwhm);\n  }\n\n  /**\n   * Calculate the number of times FWHM allows to reach a specific area coverage\n   * @param {number} [area=0.9999]\n   * @returns {number}\n   */\n  getFactor(area = 0.9999) {\n    return Gaussian.getFactor(area);\n  }\n\n  /**\n   * Calculate the area of the shape.\n   * @returns {number} - returns the area.\n   */\n\n  getArea() {\n    return Gaussian.getArea(this.fwhm, { height: this.height });\n  }\n\n  /**\n   * Compute the value of Full Width at Half Maximum (FWHM) from the width between the inflection points.\n   * //https://mathworld.wolfram.com/GaussianFunction.html\n   * @param {number} width - Width between the inflection points\n   * @returns {number} fwhm\n   */\n  widthToFWHM(width) {\n    //https://mathworld.wolfram.com/GaussianFunction.html\n    return Gaussian.widthToFWHM(width);\n  }\n\n  /**\n   * Compute the value of width between the inflection points from Full Width at Half Maximum (FWHM).\n   * //https://mathworld.wolfram.com/GaussianFunction.html\n   * @param {number} fwhm - Full Width at Half Maximum.\n   * @returns {number} width\n   */\n  fwhmToWidth(fwhm = this.fwhm) {\n    return Gaussian.fwhmToWidth(fwhm);\n  }\n\n  /**\n   * set a new full width at half maximum\n   * @param {number} fwhm - full width at half maximum\n   */\n  setFWHM(fwhm) {\n    this.fwhm = fwhm;\n  }\n\n  /**\n   * set a new height\n   * @param {number} height - The maximal intensity of the shape.\n   */\n  setHeight(height) {\n    this.height = height;\n  }\n}\n\n/**\n * Return a parameterized function of a gaussian shape (see README for equation).\n * @param {number} x - x value to calculate.\n * @param {number} fwhm - full width half maximum\n * @returns {number} - the y value of gaussian with the current parameters.\n */\nGaussian.fct = function fct(x, fwhm = 500) {\n  return Math.exp(GAUSSIAN_EXP_FACTOR * Math.pow(x / fwhm, 2));\n};\n\n/**\n * Compute the value of Full Width at Half Maximum (FWHM) from the width between the inflection points.\n * //https://mathworld.wolfram.com/GaussianFunction.html\n * @param {number} width - Width between the inflection points\n * @returns {number} fwhm\n */\nGaussian.widthToFWHM = function widthToFWHM(width) {\n  return width * ROOT_2LN2;\n};\n\n/**\n * Compute the value of width between the inflection points from Full Width at Half Maximum (FWHM).\n * //https://mathworld.wolfram.com/GaussianFunction.html\n * @param {number} fwhm - Full Width at Half Maximum.\n * @returns {number} width\n */\nGaussian.fwhmToWidth = function fwhmToWidth(fwhm) {\n  return fwhm / ROOT_2LN2;\n};\n\n/**\n * Calculate the area of a specific shape.\n * @param {number} fwhm - Full width at half maximum.\n * @param {object} [options = {}] - options.\n * @param {number} [options.height = 1] - Maximum y value of the shape.\n * @returns {number} - returns the area of the specific shape and parameters.\n */\n\nGaussian.getArea = function getArea(fwhm, options = {}) {\n  let { height = 1 } = options;\n  return (height * ROOT_PI_OVER_LN2 * fwhm) / 2;\n};\n\n/**\n * Calculate the number of times FWHM allows to reach a specific area coverage.\n * @param {number} [area=0.9999]\n * @returns {number}\n */\nGaussian.getFactor = function getFactor(area = 0.9999) {\n  return Math.sqrt(2) * erfinv(area);\n};\n","// https://en.wikipedia.org/wiki/Error_function#Inverse_functions\n// This code yields to a good approximation\n\n// If needed a better implementation using polynomial can be found on https://en.wikipedia.org/wiki/Error_function#Inverse_functions\n\nexport default function erfinv(x) {\n  let a = 0.147;\n  if (x === 0) return 0;\n  let ln1MinusXSqrd = Math.log(1 - x * x);\n  let lnEtcBy2Plus2 = ln1MinusXSqrd / 2 + 2 / (Math.PI * a);\n  let firstSqrt = Math.sqrt(lnEtcBy2Plus2 ** 2 - ln1MinusXSqrd / a);\n  let secondSqrt = Math.sqrt(firstSqrt - lnEtcBy2Plus2);\n  return secondSqrt * (x > 0 ? 1 : -1);\n}\n","import { ROOT_THREE } from '../util/constants';\n\nexport class Lorentzian {\n  /**\n   * @param {object} [options = {}]\n   * @param {number} [options.height=x] Define the height of the peak, by default area=1 (normalized)\n   * @param {number} [options.fwhm = 500] - Full Width at Half Maximum in the number of points in FWHM.\n   * @param {number} [options.sd] - Standard deviation, if it's defined options.fwhm will be ignored and the value will be computed sd * Math.sqrt(8 * Math.LN2);\n   */\n  constructor(options = {}) {\n    this.fwhm = options.fwhm === undefined ? 500 : options.fwhm;\n    this.height =\n      options.height === undefined ? 2 / Math.PI / this.fwhm : options.height;\n  }\n  /**\n   * Calculate a lorentzian shape\n   * @param {object} [options = {}]\n   * @param {number} [options.factor = Math.tan(Math.PI * (0.9999 - 0.5))] - Number of time to take fwhm to calculate length. Default covers 99.99 % of area.\n   * @param {number} [options.length = fwhm * factor + 1] - total number of points to calculate\n   * @return {Float64Array} y values\n   */\n  getData(options = {}) {\n    let { length, factor = this.getFactor() } = options;\n\n    if (!length) {\n      length = Math.min(Math.ceil(this.fwhm * factor), Math.pow(2, 25) - 1);\n      if (length % 2 === 0) length++;\n    }\n\n    const center = (length - 1) / 2;\n    const data = new Float64Array(length);\n    for (let i = 0; i <= center; i++) {\n      data[i] = this.fct(i - center) * this.height;\n      data[length - 1 - i] = data[i];\n    }\n    return data;\n  }\n\n  /**\n   * Return a parameterized function of a lorentzian shape (see README for equation).\n   * @param {number} x - x value to calculate.\n   * @returns {number} - the y value of lorentzian with the current parameters.\n   */\n  fct(x) {\n    return Lorentzian.fct(x, this.fwhm);\n  }\n\n  /**\n   * Calculate the number of times FWHM allows to reach a specific area coverage\n   * @param {number} [area=0.9999]\n   * @returns {number}\n   */\n  getFactor(area = 0.9999) {\n    return Lorentzian.getFactor(area);\n  }\n\n  /**\n   * Calculate the area of the shape.\n   * @returns {number} - returns the area.\n   */\n\n  getArea() {\n    return Lorentzian.getArea(this.fwhm, { height: this.height });\n  }\n\n  /**\n   * Compute the value of width between the inflection points of a specific shape from Full Width at Half Maximum (FWHM).\n   * //https://mathworld.wolfram.com/LorentzianFunction.html\n   * @param {number} [fwhm] - Full Width at Half Maximum.\n   * @returns {number} width between the inflection points\n   */\n  fwhmToWidth(fwhm = this.fwhm) {\n    return Lorentzian.fwhmToWidth(fwhm);\n  }\n\n  /**\n   * Compute the value of Full Width at Half Maximum (FWHM) of a specific shape from the width between the inflection points.\n   * //https://mathworld.wolfram.com/LorentzianFunction.html\n   * @param {number} [width] Width between the inflection points\n   * @returns {number} fwhm\n   */\n  widthToFWHM(width) {\n    return Lorentzian.widthToFWHM(width);\n  }\n  /**\n   * set a new full width at half maximum\n   * @param {number} fwhm - full width at half maximum\n   */\n  setFWHM(fwhm) {\n    this.fwhm = fwhm;\n  }\n\n  /**\n   * set a new height\n   * @param {number} height - The maximal intensity of the shape.\n   */\n  setHeight(height) {\n    this.height = height;\n  }\n}\n\n/**\n * Return a parameterized function of a gaussian shape (see README for equation).\n * @param {number} x - x value to calculate.\n * @param {number} fwhm - full width half maximum\n * @returns {number} - the y value of gaussian with the current parameters.\n */\nLorentzian.fct = function fct(x, fwhm) {\n  const squareFWHM = fwhm * fwhm;\n  return squareFWHM / (4 * Math.pow(x, 2) + squareFWHM);\n};\n\n/**\n * Compute the value of width between the inflection points of a specific shape from Full Width at Half Maximum (FWHM).\n * //https://mathworld.wolfram.com/LorentzianFunction.html\n * @param {number} [fwhm] - Full Width at Half Maximum.\n * @returns {number} width between the inflection points\n */\nLorentzian.fwhmToWidth = function fwhmToWidth(fwhm) {\n  return fwhm / ROOT_THREE;\n};\n\n/**\n * Compute the value of Full Width at Half Maximum (FWHM) of a specific shape from the width between the inflection points.\n * //https://mathworld.wolfram.com/LorentzianFunction.html\n * @param {number} [width] Width between the inflection points\n * @returns {number} fwhm\n */\nLorentzian.widthToFWHM = function widthToFWHM(width) {\n  return width * ROOT_THREE;\n};\n\n/**\n * Calculate the area of a specific shape.\n * @param {number} fwhm - Full width at half maximum.\n * @param {*} [options = {}] - options.\n * @param {number} [options.height = 1] - Maximum y value of the shape.\n * @returns {number} - returns the area of the specific shape and parameters.\n */\nLorentzian.getArea = function getArea(fwhm, options = {}) {\n  let { height = 1 } = options;\n\n  return (height * Math.PI * fwhm) / 2;\n};\n\n/**\n * Calculate the number of times FWHM allows to reach a specific area coverage\n * @param {number} [area=0.9999]\n * @returns {number}\n */\nLorentzian.getFactor = function getFactor(area = 0.9999) {\n  return 2 * Math.tan(Math.PI * (area - 0.5));\n};\n","import {\n  GAUSSIAN_EXP_FACTOR,\n  ROOT_2LN2_MINUS_ONE,\n  ROOT_PI_OVER_LN2,\n} from '../util/constants';\n\nimport { Gaussian } from './Gaussian';\nimport { Lorentzian } from './Lorentzian';\n\nexport class PseudoVoigt {\n  /**\n   * @param {object} [options={}]\n   * @param {number} [options.height=x] Define the height of the peak, by default area=1 (normalized)\n   * @param {number} [options.fwhm=500] - Full Width at Half Maximum in the number of points in FWHM.\n   * @param {number} [options.mu=0.5] - ratio of gaussian contribution.\n   */\n\n  constructor(options = {}) {\n    this.mu = options.mu === undefined ? 0.5 : options.mu;\n    this.fwhm = options.fwhm === undefined ? 500 : options.fwhm;\n    this.height =\n      options.height === undefined\n        ? 1 /\n          ((this.mu / Math.sqrt(-GAUSSIAN_EXP_FACTOR / Math.PI)) * this.fwhm +\n            ((1 - this.mu) * this.fwhm * Math.PI) / 2)\n        : options.height;\n  }\n\n  /**\n   * Calculate a linear combination of gaussian and lorentzian function width an same full width at half maximum\n   * @param { object } [options = {}]\n   * @param { number } [options.factor = 2 * Math.tan(Math.PI * (0.9999 - 0.5))] - Number of time to take fwhm in the calculation of the length.Default covers 99.99 % of area.\n   * @param { number } [options.length = fwhm * factor + 1] - total number of points to calculate\n   * @return { object } - { fwhm, data<Float64Array>} - An with the number of points at half maximum and the array of y values covering the 99.99 % of the area.\n   */\n\n  getData(options = {}) {\n    let { length, factor = this.getFactor() } = options;\n    if (!length) {\n      length = Math.ceil(this.fwhm * factor);\n      if (length % 2 === 0) length++;\n    }\n\n    const center = (length - 1) / 2;\n\n    let data = new Float64Array(length);\n    for (let i = 0; i <= center; i++) {\n      data[i] = this.fct(i - center) * this.height;\n      data[length - 1 - i] = data[i];\n    }\n\n    return data;\n  }\n\n  /**\n   * Return a parameterized function of a linear combination of Gaussian and Lorentzian shapes where the full width at half maximum are the same for both kind of shapes (see README for equation).\n   * @param {number} [x] x value to calculate.\n   * @returns {number} - the y value of a pseudo voigt with the current parameters.\n   */\n\n  fct(x) {\n    return PseudoVoigt.fct(x, this.fwhm, this.mu);\n  }\n\n  /**\n   * Calculate the number of times FWHM allows to reach a specific area coverage\n   * @param {number} [area=0.9999] - required area to be coverage\n   * @param {number} [mu=this.mu] - ratio of gaussian contribution.\n   * @returns {number}\n   */\n  getFactor(area = 0.9999, mu = this.mu) {\n    return PseudoVoigt.getFactor(area, mu);\n  }\n\n  /**\n   * Calculate the area of the shape.\n   * @returns {number} - returns the area.\n   */\n  getArea() {\n    return PseudoVoigt.getArea(this.fwhm, { height: this.height, mu: this.mu });\n  }\n\n  /**\n   * Compute the value of Full Width at Half Maximum (FMHM) from width between the inflection points.\n   * @param {number} width - width between the inflection points\n   * @param {number} [mu = 0.5] - ratio of gaussian contribution.\n   * @returns {number} Full Width at Half Maximum (FMHM).\n   */\n  widthToFWHM(width, mu) {\n    return PseudoVoigt.widthToFWHM(width, mu);\n  }\n  /**\n   * Compute the value of width between the inflection points from Full Width at Half Maximum (FWHM).\n   * @param {number} fwhm - Full Width at Half Maximum.\n   * @param {number} [mu] - ratio of gaussian contribution.\n   * @returns {number} width between the inflection points.\n   */\n  fwhmToWidth(fwhm = this.fwhm, mu = this.mu) {\n    return PseudoVoigt.fwhmToWidth(fwhm, mu);\n  }\n\n  /**\n   * set a new full width at half maximum\n   * @param {number} fwhm - full width at half maximum\n   */\n  setFWHM(fwhm) {\n    this.fwhm = fwhm;\n  }\n\n  /**\n   * set a new height\n   * @param {number} height - The maximal intensity of the shape.\n   */\n  setHeight(height) {\n    this.height = height;\n  }\n\n  /**\n   * set a new mu\n   * @param {number} mu - ratio of gaussian contribution.\n   */\n  setMu(mu) {\n    this.mu = mu;\n  }\n}\n\n/**\n * Return a parameterized function of a gaussian shape (see README for equation).\n * @param {number} x - x value to calculate.\n * @param {number} fwhm - full width half maximum\n * @param {number} [mu=0.5] - ratio of gaussian contribution.\n * @returns {number} - the y value of gaussian with the current parameters.\n */\nPseudoVoigt.fct = function fct(x, fwhm, mu = 0.5) {\n  return (1 - mu) * Lorentzian.fct(x, fwhm) + mu * Gaussian.fct(x, fwhm);\n};\n\n/**\n * Compute the value of Full Width at Half Maximum (FMHM) from width between the inflection points.\n * @param {number} width - width between the inflection points\n * @param {number} [mu = 0.5] - ratio of gaussian contribution.\n * @returns {number} Full Width at Half Maximum (FMHM).\n */\nPseudoVoigt.widthToFWHM = function widthToFWHM(width, mu = 0.5) {\n  return width * (mu * ROOT_2LN2_MINUS_ONE + 1);\n};\n/**\n * Compute the value of width between the inflection points from Full Width at Half Maximum (FWHM).\n * @param {number} fwhm - Full Width at Half Maximum.\n * @param {number} [mu = 0.5] - ratio of gaussian contribution.\n * @returns {number} width between the inflection points.\n */\nPseudoVoigt.fwhmToWidth = function fwhmToWidth(fwhm, mu = 0.5) {\n  return fwhm / (mu * ROOT_2LN2_MINUS_ONE + 1);\n};\n\n/**\n * Calculate the area of a specific shape.\n * @param {number} fwhm - Full width at half maximum.\n * @param {*} [options = {}] - options.\n * @param {number} [options.height = 1] - Maximum y value of the shape.\n * @param {number} [options.mu = 0.5] - ratio of gaussian contribution.\n * @returns {number} - returns the area of the specific shape and parameters.\n */\nPseudoVoigt.getArea = function getArea(fwhm, options = {}) {\n  let { height = 1, mu = 0.5 } = options;\n  return (fwhm * height * (mu * ROOT_PI_OVER_LN2 + (1 - mu) * Math.PI)) / 2;\n};\n\n/**\n * Calculate the number of times FWHM allows to reach a specific area coverage\n * @param {number} [area=0.9999] - required area to be coverage\n * @param {number} [mu=this.mu] - ratio of gaussian contribution.\n * @returns {number}\n */\nPseudoVoigt.getFactor = function getFactor(area = 0.9999, mu = 0.5) {\n  return mu < 1 ? Lorentzian.getFactor(area) : Gaussian.getFactor(area);\n};\n","import { PseudoVoigt } from 'ml-peak-shape-generator';\n\n/**\n * This function calculates the spectrum as a sum of linear combination of gaussian and lorentzian functions. The pseudo voigt\n * parameters are divided in 4 batches. 1st: centers; 2nd: heights; 3th: widths; 4th: mu's ;\n * @param t Ordinate value\n * @param p Lorentzian parameters\n * @returns {*}\n */\n\nexport function sumOfGaussianLorentzians(p) {\n  return function (t) {\n    let nL = p.length / 4;\n    let result = 0;\n    for (let i = 0; i < nL; i++) {\n      result +=\n        p[i + nL] * PseudoVoigt.fct(t - p[i], p[i + nL * 2], p[i + nL * 3]);\n    }\n    return result;\n  };\n}\n","import { Gaussian } from 'ml-peak-shape-generator';\n/**\n * This function calculates the spectrum as a sum of gaussian functions. The Gaussian\n * parameters are divided in 3 batches. 1st: centers; 2nd: height; 3th: widths;\n * @param t Ordinate values\n * @param p Gaussian parameters\n * @returns {*}\n */\n\nexport function sumOfGaussians(p) {\n  return function (t) {\n    let nL = p.length / 3;\n    let result = 0;\n    for (let i = 0; i < nL; i++) {\n      result += p[i + nL] * Gaussian.fct(t - p[i], p[i + nL * 2]);\n    }\n    return result;\n  };\n}\n","import { Lorentzian } from 'ml-peak-shape-generator';\n\n/**\n * This function calculates the spectrum as a sum of lorentzian functions. The Lorentzian\n * parameters are divided in 3 batches. 1st: centers; 2nd: heights; 3th: widths;\n * @param t Ordinate values\n * @param p Lorentzian parameters\n * @returns {*}\n */\n\nexport function sumOfLorentzians(p) {\n  return function (t) {\n    let nL = p.length / 3;\n    let result = 0;\n    for (let i = 0; i < nL; i++) {\n      result += p[i + nL] * Lorentzian.fct(t - p[i], p[i + nL * 2]);\n    }\n    return result;\n  };\n}\n","import getMaxValue from 'ml-array-max';\n\nimport { selectMethod } from './selectMethod';\nimport { sumOfGaussianLorentzians } from './shapes/sumOfGaussianLorentzians';\nimport { sumOfGaussians } from './shapes/sumOfGaussians';\nimport { sumOfLorentzians } from './shapes/sumOfLorentzians';\n\nconst STATE_INIT = 0;\nconst STATE_MIN = 1;\nconst STATE_MAX = 2;\nconst STATE_GRADIENT_DIFFERENCE = 3;\n\nconst X = 0;\nconst Y = 1;\nconst WIDTH = 2;\nconst MU = 3;\n\nconst keys = ['x', 'y', 'width', 'mu'];\n/**\n * Fits a set of points to the sum of a set of bell functions.\n * @param {object} data - An object containing the x and y data to be fitted.\n * @param {array} peaks - A list of initial parameters to be optimized. e.g. coming from a peak picking [{x, y, width}].\n * @param {object} [options = {}]\n * @param {object} [options.shape={}] - it's specify the kind of shape used to fitting.\n * @param {string} [options.shape.kind = 'gaussian'] - kind of shape; lorentzian, gaussian and pseudovoigt are supported.\n * @param {object} [options.optimization = {}] - it's specify the kind and options of the algorithm use to optimize parameters.\n * @param {object} [options.optimization.kind = 'lm'] - kind of algorithm. By default it's levenberg-marquardt.\n * @param {object} [options.optimization.options = {}] - options for the specific kind of algorithm.\n * @param {number} [options.optimization.options.timeout] - maximum time running before break in seconds.\n * @param {number} [options.optimization.options.damping=1.5]\n * @param {number} [options.optimization.options.maxIterations=100]\n * @param {number} [options.optimization.options.errorTolerance=1e-8]\n * @returns {object} - A object with fitting error and the list of optimized parameters { parameters: [ {x, y, width} ], error } if the kind of shape is pseudoVoigt mu parameter is optimized.\n */\nexport function optimize(data, peaks, options = {}) {\n  let {\n    shape = { kind: 'gaussian' },\n    optimization = {\n      kind: 'lm',\n    },\n  } = options;\n\n  let {\n    minFactorWidth = 0.25,\n    maxFactorWidth = 4,\n    minFactorX = 2,\n    maxFactorX = 2,\n    minFactorY = 0,\n    maxFactorY = 1.5,\n    minMuValue = 0,\n    maxMuValue = 1,\n    xGradientDifference,\n    yGradientDifference = 1e-3,\n    widthGradientDifference,\n    muGradientDifference = 0.01,\n  } = optimization;\n\n  peaks = JSON.parse(JSON.stringify(peaks));\n\n  if (typeof shape.kind !== 'string') {\n    throw new Error('kind should be a string');\n  }\n\n  let kind = shape.kind.toLowerCase().replace(/[^a-z]/g, '');\n\n  let x = data.x;\n  let maxY = getMaxValue(data.y);\n  let y = new Array(x.length);\n  for (let i = 0; i < x.length; i++) {\n    y[i] = data.y[i] / maxY;\n  }\n\n  let nbParams;\n  let paramsFunc;\n  switch (kind) {\n    case 'gaussian':\n      nbParams = 3;\n      paramsFunc = sumOfGaussians;\n      break;\n    case 'lorentzian':\n      nbParams = 3;\n      paramsFunc = sumOfLorentzians;\n      break;\n    case 'pseudovoigt':\n      nbParams = 4;\n      paramsFunc = sumOfGaussianLorentzians;\n      break;\n    default:\n      throw new Error('kind of shape is not supported');\n  }\n\n  const getValueOptions = {\n    maxY,\n    minFactorX,\n    maxFactorX,\n    minFactorY,\n    maxFactorY,\n    minMuValue,\n    maxMuValue,\n    minFactorWidth,\n    maxFactorWidth,\n    xGradientDifference,\n    yGradientDifference,\n    widthGradientDifference,\n    muGradientDifference,\n  };\n  let nbShapes = peaks.length;\n  let pMin = new Float64Array(nbShapes * nbParams);\n  let pMax = new Float64Array(nbShapes * nbParams);\n  let pInit = new Float64Array(nbShapes * nbParams);\n  let gradientDifference = new Float64Array(nbShapes * nbParams);\n  for (let i = 0; i < nbShapes; i++) {\n    let peak = peaks[i];\n    for (let s = 0; s < nbParams; s++) {\n      pInit[i + s * nbShapes] = getValue(s, peak, STATE_INIT, getValueOptions);\n      pMin[i + s * nbShapes] = getValue(s, peak, STATE_MIN, getValueOptions);\n      pMax[i + s * nbShapes] = getValue(s, peak, STATE_MAX, getValueOptions);\n      gradientDifference[i + s * nbShapes] = getValue(\n        s,\n        peak,\n        STATE_GRADIENT_DIFFERENCE,\n        getValueOptions,\n      );\n    }\n  }\n\n  let { algorithm, optimizationOptions } = selectMethod(optimization);\n\n  optimizationOptions.minValues = pMin;\n  optimizationOptions.maxValues = pMax;\n  optimizationOptions.initialValues = pInit;\n  optimizationOptions.gradientDifference = gradientDifference;\n\n  let pFit = algorithm({ x, y }, paramsFunc, optimizationOptions);\n\n  let { parameterError: error, iterations } = pFit;\n  let result = { error, iterations, peaks };\n  for (let i = 0; i < peaks.length; i++) {\n    pFit.parameterValues[i + peaks.length] *= maxY;\n    for (let s = 0; s < nbParams; s++) {\n      // we modify the optimized parameters\n      peaks[i][keys[s]] = pFit.parameterValues[i + s * peaks.length];\n    }\n  }\n\n  return result;\n}\n\nfunction getValue(parameterIndex, peak, state, options) {\n  let maxY = options.maxY;\n  switch (state) {\n    case STATE_INIT:\n      switch (parameterIndex) {\n        case X:\n          return peak.x;\n        case Y:\n          return peak.y / maxY;\n        case WIDTH:\n          return peak.width;\n        case MU:\n          return peak.mu || 0.5;\n        default:\n          throw new Error('The parameter is not supported');\n      }\n    case STATE_GRADIENT_DIFFERENCE:\n      switch (parameterIndex) {\n        case X:\n          return peak.xGradientDifference !== undefined\n            ? peak.xGradientDifference\n            : options.xGradientDifference !== undefined\n            ? options.xGradientDifference\n            : peak.width / 2e3;\n        case Y:\n          return peak.yGradientDifference !== undefined\n            ? peak.yGradientDifference\n            : options.yGradientDifference;\n        case WIDTH:\n          return peak.widthGradientDifference !== undefined\n            ? peak.widthGradientDifference\n            : options.widthGradientDifference !== undefined\n            ? options.widthGradientDifference\n            : peak.width / 2e3;\n        case MU:\n          return peak.muGradientDifference !== undefined\n            ? peak.muGradientDifference\n            : options.muGradientDifference;\n        default:\n          throw new Error('The parameter is not supported');\n      }\n    case STATE_MIN:\n      switch (parameterIndex) {\n        case X:\n          return peak.x - peak.width * options.minFactorX;\n        case Y:\n          return (peak.y / maxY) * options.minFactorY;\n        case WIDTH:\n          return peak.width * options.minFactorWidth;\n        case MU:\n          return options.minMuValue;\n        default:\n          throw new Error('The parameter is not supported');\n      }\n    case STATE_MAX:\n      switch (parameterIndex) {\n        case X:\n          return peak.x + peak.width * options.maxFactorX;\n        case Y:\n          return (peak.y / maxY) * options.maxFactorY;\n        case WIDTH:\n          return peak.width * options.maxFactorWidth;\n        case MU:\n          return options.maxMuValue;\n        default:\n          throw new Error('The parameter is not supported');\n      }\n    default:\n      throw Error('the state is not supported');\n  }\n}\n"],"names":["toString","Object","prototype","isAnyArray","object","call","endsWith","max","input","options","arguments","length","undefined","isArray","TypeError","_options$fromIndex","fromIndex","_options$toIndex","toIndex","Number","isInteger","Error","maxValue","i","errorCalculation","data","parameters","parameterizedFunction","weightSquare","error","func","x","Math","pow","y","min","minValue","rescale","output","Array","currentMin","currentMax","RangeError","_options$min","autoMinMax","_options$max","factor","indent","repeat","indentData","inspectMatrixWithOptions","matrix","maxRows","maxColumns","maxNumSize","constructor","name","rows","columns","maxI","maxJ","result","line","j","push","formatNumber","get","join","inspectData","num","numStr","String","padEnd","precise","toPrecision","exponential","toExponential","eIndex","indexOf","e","slice","checkRowIndex","index","outer","checkColumnIndex","checkRowVector","vector","to1DArray","checkColumnVector","checkRowIndices","rowIndices","some","r","from","checkColumnIndices","columnIndices","c","checkRange","startRow","endRow","startColumn","endColumn","checkNumber","newArray","value","array","checkNonEmpty","isEmpty","AbstractMatrix","newRows","newColumns","newData","newMatrix","Matrix","row","column","set","fill","random","interval","round","this","zeros","l","matrix1","matrix2","checkMatrix","isMatrix","klass","apply","callback","to2DArray","copy","toJSON","isRowVector","isColumnVector","isVector","isSquare","isSymmetric","isEchelonForm","previousColumn","checked","isReducedEchelonForm","k","echelonForm","clone","h","iMax","swapRows","tmp","reducedEchelonForm","m","n","maxRow","p","pivot","setSubMatrix","neg","mulS","getRow","getRowVector","rowVector","setRow","row1","row2","temp","getColumn","getColumnVector","columnVector","setColumn","swapColumns","column1","column2","addRowVector","subRowVector","mulRowVector","divRowVector","addColumnVector","subColumnVector","mulColumnVector","divColumnVector","mulRow","mulColumn","NaN","v","maxIndex","idx","minIndex","maxRowIndex","minRow","minRowIndex","maxColumn","maxColumnIndex","minColumn","minColumnIndex","diag","norm","type","sqrt","cumulativeSum","sum","dot","vector2","vector1","mmul","other","Bcolj","Float64Array","s","strassen2x2","a11","b11","a12","b12","a21","b21","a22","b22","m1","m2","m3","m4","m5","c00","c01","c10","c11","strassen3x3","a00","a01","a02","a10","a20","b00","b01","b02","b10","b20","m6","m7","m8","m9","m12","m13","m14","m15","m16","m17","m18","c02","c12","c20","c21","c22","mmulStrassen","r1","c1","r2","c2","embed","mat","cols","resultat","console","warn","blockMult","a","b","halfRows","parseInt","halfCols","subMatrix","add","sub","scaleRows","isFinite","scaleColumns","flipRows","middle","ceil","first","last","flipColumns","kroneckerProduct","q","transpose","sortRows","compareFunction","compareNumbers","sort","sortColumns","subMatrixRow","indices","subMatrixColumn","selection","checkIndices","rowIndex","columnIndex","trace","by","sumByRow","sumByColumn","sumAll","product","productByRow","productByColumn","productAll","mean","size","variance","unbiased","sum1","sum2","varianceByRow","varianceByColumn","varianceAll","standardDeviation","center","centerByRow","centerByColumn","centerAll","scale","getScaleByRow","scaleByRow","getScaleByColumn","scaleByColumn","divider","getScaleAll","scaleAll","Symbol","for","rand","randomInt","randInt","diagonal","identity","eye","negate","tensorProduct","nRows","nColumns","arrayData","removeRow","splice","addRow","removeColumn","newRow","addColumn","addS","addM","subS","subM","subtract","subtractS","subtractM","mul","mulM","multiply","multiplyS","multiplyM","div","divS","divM","divide","divideS","divideM","mod","modS","modM","modulus","modulusS","modulusM","and","andS","andM","or","orS","orM","xor","xorS","xorM","leftShift","leftShiftS","leftShiftM","signPropagatingRightShift","signPropagatingRightShiftS","signPropagatingRightShiftM","rightShift","rightShiftS","rightShiftM","zeroFillRightShift","zeroFillRightShiftS","zeroFillRightShiftM","not","abs","acos","acosh","asin","asinh","atan","atanh","cbrt","clz32","cos","cosh","exp","expm1","floor","fround","log","log1p","log10","log2","sign","sin","sinh","tan","tanh","trunc","arg0","powS","powM","installMathOperations","WrapperMatrix2D","LuDecomposition","t","LUcolj","kmax","lu","pivotVector","pivotSign","LU","isSingular","col","solve","count","X","determinant","hypotenuse","QrDecomposition","qr","rdiag","nrm","QR","Rdiag","isFullRank","SingularValueDecomposition","computeLeftSingularVectors","computeRightSingularVectors","autoTranspose","wantu","Boolean","wantv","swapped","aux","nu","ni","U","V","work","si","nct","nrt","mrc","pp","eps","EPSILON","kase","alpha","MIN_VALUE","isNaN","ks","f","cs","sn","sp","spm1","epm1","sk","ek","shift","g","Y","threshold","scols","Ls","rightSingularVectors","VL","vrows","urows","VLU","solveForDiagonal","inverse","vcols","ucols","tol","ii","useSVD","leftHandSide","rightHandSide","step","params","damping","gradientDifference","centralDifference","weights","evaluatedData","gradientFunc","paramFunction","nbParams","nbPoints","ans","param","delta","auxParams","funcParam","funcParam2","point","gradientFunction","residualError","matrixFunction","inverseMatrix","jacobianWeigthResidualError","perturbations","levenbergMarquardt","checkTimeout","minValues","maxValues","dampingStepUp","dampingStepDown","maxIterations","errorTolerance","improvementThreshold","timeout","initialValues","filler","parLen","MAX_SAFE_INTEGER","MIN_SAFE_INTEGER","endTime","Date","now","checkOptions","converged","iteration","previousError","parameterValues","parameterError","iterations","selectMethod","optimizationOptions","kind","toLowerCase","replace","getKind","algorithm","LM","assign","lmOptions","GAUSSIAN_EXP_FACTOR","LN2","ROOT_PI_OVER_LN2","PI","ROOT_THREE","ROOT_2LN2","ROOT_2LN2_MINUS_ONE","Gaussian","fwhm","sd","widthToFWHM","height","getData","getFactor","fct","area","getArea","width","fwhmToWidth","setFWHM","setHeight","ln1MinusXSqrd","lnEtcBy2Plus2","firstSqrt","erfinv","Lorentzian","squareFWHM","PseudoVoigt","mu","setMu","sumOfGaussianLorentzians","nL","sumOfGaussians","sumOfLorentzians","keys","getValue","parameterIndex","peak","state","maxY","xGradientDifference","yGradientDifference","widthGradientDifference","muGradientDifference","minFactorX","minFactorY","minFactorWidth","minMuValue","maxFactorX","maxFactorY","maxFactorWidth","maxMuValue","peaks","shape","optimization","JSON","parse","stringify","paramsFunc","getMaxValue","getValueOptions","nbShapes","pMin","pMax","pInit","pFit"],"mappings":"sPAAA,MAAMA,EAAWC,OAAOC,UAAUF,SAEnB,SAASG,EAAWC,UAC1BJ,EAASK,KAAKD,GAAQE,SAAS,UCDxC,SAASC,EAAIC,OACPC,EAAUC,UAAUC,OAAS,QAAsBC,IAAjBF,UAAU,GAAmBA,UAAU,GAAK,OAE7EG,EAAQL,SACL,IAAIM,UAAU,6BAGD,IAAjBN,EAAMG,aACF,IAAIG,UAAU,+BAGlBC,EAAqBN,EAAQO,UAC7BA,OAAmC,IAAvBD,EAAgC,EAAIA,EAChDE,EAAmBR,EAAQS,QAC3BA,OAA+B,IAArBD,EAA8BT,EAAMG,OAASM,KAEvDD,EAAY,GAAKA,GAAaR,EAAMG,SAAWQ,OAAOC,UAAUJ,SAC5D,IAAIK,MAAM,+DAGdH,GAAWF,GAAaE,EAAUV,EAAMG,SAAWQ,OAAOC,UAAUF,SAChE,IAAIG,MAAM,yFAGdC,EAAWd,EAAMQ,GAEZO,EAAIP,EAAY,EAAGO,EAAIL,EAASK,IACnCf,EAAMe,GAAKD,IAAUA,EAAWd,EAAMe,WAGrCD,ECtBM,SAASE,EACtBC,EACAC,EACAC,EACAC,OAEIC,EAAQ,QACNC,EAAOH,EAAsBD,OAC9B,IAAIH,EAAI,EAAGA,EAAIE,EAAKM,EAAEpB,OAAQY,IACjCM,GAASG,KAAKC,IAAIR,EAAKS,EAAEX,GAAKO,EAAKL,EAAKM,EAAER,IAAK,GAAKK,EAAaL,UAG5DM,ECpBT,SAASM,EAAI3B,OACPC,EAAUC,UAAUC,OAAS,QAAsBC,IAAjBF,UAAU,GAAmBA,UAAU,GAAK,OAE7EG,EAAQL,SACL,IAAIM,UAAU,6BAGD,IAAjBN,EAAMG,aACF,IAAIG,UAAU,+BAGlBC,EAAqBN,EAAQO,UAC7BA,OAAmC,IAAvBD,EAAgC,EAAIA,EAChDE,EAAmBR,EAAQS,QAC3BA,OAA+B,IAArBD,EAA8BT,EAAMG,OAASM,KAEvDD,EAAY,GAAKA,GAAaR,EAAMG,SAAWQ,OAAOC,UAAUJ,SAC5D,IAAIK,MAAM,+DAGdH,GAAWF,GAAaE,EAAUV,EAAMG,SAAWQ,OAAOC,UAAUF,SAChE,IAAIG,MAAM,yFAGde,EAAW5B,EAAMQ,GAEZO,EAAIP,EAAY,EAAGO,EAAIL,EAASK,IACnCf,EAAMe,GAAKa,IAAUA,EAAW5B,EAAMe,WAGrCa,EC5BT,SAASC,EAAQ7B,OASX8B,EARA7B,EAAUC,UAAUC,OAAS,QAAsBC,IAAjBF,UAAU,GAAmBA,UAAU,GAAK,OAE7EG,EAAQL,SACL,IAAIM,UAAU,0BACf,GAAqB,IAAjBN,EAAMG,aACT,IAAIG,UAAU,mCAKCF,IAAnBH,EAAQ6B,OAAsB,KAC3BzB,EAAQJ,EAAQ6B,cACb,IAAIxB,UAAU,+CAGtBwB,EAAS7B,EAAQ6B,YAEjBA,EAAS,IAAIC,MAAM/B,EAAMG,YAGvB6B,EAAaL,EAAI3B,GACjBiC,EAAalC,EAAIC,MAEjBgC,IAAeC,QACX,IAAIC,WAAW,mFAGnBC,EAAelC,EAAQ0B,IACvBC,OAA4B,IAAjBO,EAA0BlC,EAAQmC,WAAaJ,EAAa,EAAIG,EAC3EE,EAAepC,EAAQF,IACvBe,OAA4B,IAAjBuB,EAA0BpC,EAAQmC,WAAaH,EAAa,EAAII,KAE3ET,GAAYd,QACR,IAAIoB,WAAW,sDAGnBI,GAAUxB,EAAWc,IAAaK,EAAaD,GAE1CjB,EAAI,EAAGA,EAAIf,EAAMG,OAAQY,IAChCe,EAAOf,IAAMf,EAAMe,GAAKiB,GAAcM,EAASV,SAG1CE,EC/CT,MAAMS,EAAS,IAAIC,OAAO,GACpBC,EAAa,IAAID,OAAO,GAMvB,SAASE,EAAyBC,EAAQ1C,EAAU,UACnD2C,QAAEA,EAAU,GAAZC,WAAgBA,EAAa,GAA7BC,WAAiCA,EAAa,GAAM7C,QAClD,GAAE0C,EAAOI,YAAYC,WAC7BT,OACAE,IAOF,SAAqBE,EAAQC,EAASC,EAAYC,SAC1CG,KAAEA,EAAFC,QAAQA,GAAYP,EACpBQ,EAAO3B,KAAKG,IAAIsB,EAAML,GACtBQ,EAAO5B,KAAKG,IAAIuB,EAASL,GACzBQ,EAAS,OACV,IAAItC,EAAI,EAAGA,EAAIoC,EAAMpC,IAAK,KACzBuC,EAAO,OACN,IAAIC,EAAI,EAAGA,EAAIH,EAAMG,IACxBD,EAAKE,KAAKC,EAAad,EAAOe,IAAI3C,EAAGwC,GAAIT,IAE3CO,EAAOG,KAAM,GAAEF,EAAKK,KAAK,QAEvBP,IAASF,IACXG,EAAOA,EAAOlD,OAAS,IAAO,QAAO+C,EAAUL,kBAE7CM,IAASF,GACXI,EAAOG,KAAM,OAAMP,EAAOL,sBAErBS,EAAOM,KAAM,KAAIlB,KAzBXmB,CAAYjB,EAAQC,EAASC,EAAYC,OACtDP,OACAA,UAAeI,EAAOM,SACtBV,aAAkBI,EAAOO,aAyB3B,SAASO,EAAaI,EAAKf,SACnBgB,EAASC,OAAOF,MAClBC,EAAO3D,QAAU2C,SACZgB,EAAOE,OAAOlB,EAAY,WAE7BmB,EAAUJ,EAAIK,YAAYpB,EAAa,MACzCmB,EAAQ9D,QAAU2C,SACbmB,QAEHE,EAAcN,EAAIO,cAActB,EAAa,GAC7CuB,EAASF,EAAYG,QAAQ,KAC7BC,EAAIJ,EAAYK,MAAMH,UACrBF,EAAYK,MAAM,EAAG1B,EAAayB,EAAEpE,QAAUoE,EC5ChD,SAASE,EAAc9B,EAAQ+B,EAAOC,OACvC5E,EAAM4E,EAAQhC,EAAOM,KAAON,EAAOM,KAAO,KAC1CyB,EAAQ,GAAKA,EAAQ3E,QACjB,IAAImC,WAAW,0BAWlB,SAAS0C,EAAiBjC,EAAQ+B,EAAOC,OAC1C5E,EAAM4E,EAAQhC,EAAOO,QAAUP,EAAOO,QAAU,KAChDwB,EAAQ,GAAKA,EAAQ3E,QACjB,IAAImC,WAAW,6BAYlB,SAAS2C,EAAelC,EAAQmC,MACjCA,EAAOC,YACTD,EAASA,EAAOC,aAEdD,EAAO3E,SAAWwC,EAAOO,cACrB,IAAIhB,WACR,gEAGG4C,EAWF,SAASE,EAAkBrC,EAAQmC,MACpCA,EAAOC,YACTD,EAASA,EAAOC,aAEdD,EAAO3E,SAAWwC,EAAOM,WACrB,IAAIf,WAAW,6DAEhB4C,EAUF,SAASG,EAAgBtC,EAAQuC,MACZ,iBAAfA,QACH,IAAI5E,UAAU,sCAGT4E,EAAWC,MAAMC,GACrBA,EAAI,GAAKA,GAAKzC,EAAOM,aAItB,IAAIf,WAAW,uCAGlBH,MAAM1B,QAAQ6E,KAAaA,EAAanD,MAAMsD,KAAKH,IAEjDA,EAGF,SAASI,EAAmB3C,EAAQ4C,MACZ,iBAAlBA,QACH,IAAIjF,UAAU,yCAGNiF,EAAcJ,MAAMK,GAC3BA,EAAI,GAAKA,GAAK7C,EAAOO,gBAItB,IAAIhB,WAAW,0CAElBH,MAAM1B,QAAQkF,KAAgBA,EAAgBxD,MAAMsD,KAAKE,IAEvDA,EAGF,SAASE,EAAW9C,EAAQ+C,EAAUC,EAAQC,EAAaC,MACvC,IAArB3F,UAAUC,aACN,IAAI+B,WAAW,2BAEvB4D,EAAY,WAAYJ,GACxBI,EAAY,SAAUH,GACtBG,EAAY,cAAeF,GAC3BE,EAAY,YAAaD,GAEvBH,EAAWC,GACXC,EAAcC,GACdH,EAAW,GACXA,GAAY/C,EAAOM,MACnB0C,EAAS,GACTA,GAAUhD,EAAOM,MACjB2C,EAAc,GACdA,GAAejD,EAAOO,SACtB2C,EAAY,GACZA,GAAalD,EAAOO,cAEd,IAAIhB,WAAW,sCAIlB,SAAS6D,EAAS5F,EAAQ6F,EAAQ,OACnCC,EAAQ,OACP,IAAIlF,EAAI,EAAGA,EAAIZ,EAAQY,IAC1BkF,EAAMzC,KAAKwC,UAENC,EAGT,SAASH,EAAY9C,EAAMgD,MACJ,iBAAVA,QACH,IAAI1F,UAAW,GAAE0C,sBAIpB,SAASkD,EAAcvD,MACxBA,EAAOwD,gBACH,IAAItF,MAAM,yCClHb,MAAMuF,qBACQC,EAASC,EAAYC,MACzBF,EAAUC,IACRC,EAAQpG,aACf,IAAI+B,WAAW,mDAEnBsE,EAAY,IAAIC,EAAOJ,EAASC,OAC/B,IAAII,EAAM,EAAGA,EAAML,EAASK,QAC1B,IAAIC,EAAS,EAAGA,EAASL,EAAYK,IACxCH,EAAUI,IAAIF,EAAKC,EAAQJ,EAAQG,EAAMJ,EAAaK,WAGnDH,mBAGQD,OACXzB,EAAS,IAAI2B,EAAO,EAAGF,EAAQpG,YAC9B,IAAIY,EAAI,EAAGA,EAAIwF,EAAQpG,OAAQY,IAClC+D,EAAO8B,IAAI,EAAG7F,EAAGwF,EAAQxF,WAEpB+D,sBAGWyB,OACdzB,EAAS,IAAI2B,EAAOF,EAAQpG,OAAQ,OACnC,IAAIY,EAAI,EAAGA,EAAIwF,EAAQpG,OAAQY,IAClC+D,EAAO8B,IAAI7F,EAAG,EAAGwF,EAAQxF,WAEpB+D,eAGI7B,EAAMC,UACV,IAAIuD,EAAOxD,EAAMC,eAGdD,EAAMC,UACT,IAAIuD,EAAOxD,EAAMC,GAAS2D,KAAK,eAG5B5D,EAAMC,EAASjD,EAAU,OACZ,iBAAZA,QACH,IAAIK,UAAU,mCAEhBwG,OAAEA,EAAStF,KAAKsF,QAAW7G,MAC7B0C,EAAS,IAAI8D,EAAOxD,EAAMC,OACzB,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IAC3BZ,EAAOiE,IAAI7F,EAAGwC,EAAGuD,YAGdnE,iBAGMM,EAAMC,EAASjD,EAAU,OACf,iBAAZA,QACH,IAAIK,UAAU,mCAEhBqB,IAAEA,EAAM,EAAR5B,IAAWA,EAAM,IAAjB+G,OAAuBA,EAAStF,KAAKsF,QAAW7G,MACjDU,OAAOC,UAAUe,GAAM,MAAM,IAAIrB,UAAU,8BAC3CK,OAAOC,UAAUb,GAAM,MAAM,IAAIO,UAAU,6BAC5CqB,GAAO5B,EAAK,MAAM,IAAImC,WAAW,oCACjC6E,EAAWhH,EAAM4B,EACjBgB,EAAS,IAAI8D,EAAOxD,EAAMC,OACzB,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IAAK,KAC5ByC,EAAQrE,EAAMH,KAAKwF,MAAMF,IAAWC,GACxCpE,EAAOiE,IAAI7F,EAAGwC,EAAGyC,UAGdrD,aAGEM,EAAMC,EAAS8C,QACR5F,IAAZ8C,IAAuBA,EAAUD,QACvB7C,IAAV4F,IAAqBA,EAAQ,OAC7BrE,EAAMH,KAAKG,IAAIsB,EAAMC,GACrBP,EAASsE,KAAKC,MAAMjE,EAAMC,OACzB,IAAInC,EAAI,EAAGA,EAAIY,EAAKZ,IACvB4B,EAAOiE,IAAI7F,EAAGA,EAAGiF,UAEZrD,cAGG1B,EAAMgC,EAAMC,OAClBiE,EAAIlG,EAAKd,YACAC,IAAT6C,IAAoBA,EAAOkE,QACf/G,IAAZ8C,IAAuBA,EAAUD,OACjCtB,EAAMH,KAAKG,IAAIwF,EAAGlE,EAAMC,GACxBP,EAASsE,KAAKC,MAAMjE,EAAMC,OACzB,IAAInC,EAAI,EAAGA,EAAIY,EAAKZ,IACvB4B,EAAOiE,IAAI7F,EAAGA,EAAGE,EAAKF,WAEjB4B,aAGEyE,EAASC,GAClBD,EAAUH,KAAKK,YAAYF,GAC3BC,EAAUJ,KAAKK,YAAYD,OACvBpE,EAAOmE,EAAQnE,KACfC,EAAUkE,EAAQlE,QAClBG,EAAS,IAAIoD,EAAOxD,EAAMC,OACzB,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IAC3BF,EAAOuD,IAAI7F,EAAGwC,EAAG/B,KAAKG,IAAIyF,EAAQ1D,IAAI3C,EAAGwC,GAAI8D,EAAQ3D,IAAI3C,EAAGwC,YAGzDF,aAGE+D,EAASC,GAClBD,EAAUH,KAAKK,YAAYF,GAC3BC,EAAUJ,KAAKK,YAAYD,OACvBpE,EAAOmE,EAAQnE,KACfC,EAAUkE,EAAQlE,QAClBG,EAAS,IAAI4D,KAAKhE,EAAMC,OACvB,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IAC3BF,EAAOuD,IAAI7F,EAAGwC,EAAG/B,KAAKzB,IAAIqH,EAAQ1D,IAAI3C,EAAGwC,GAAI8D,EAAQ3D,IAAI3C,EAAGwC,YAGzDF,qBAGU2C,UACVI,EAAemB,SAASvB,GAASA,EAAQ,IAAIS,EAAOT,mBAG7CA,UACE,MAATA,GAAiC,WAAhBA,EAAMwB,wBAIvBP,KAAKhE,KAAOgE,KAAK/D,QAG1BuE,MAAMC,MACoB,mBAAbA,QACH,IAAIpH,UAAU,mCAEjB,IAAIS,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAChCmE,EAAS7H,KAAKoH,KAAMlG,EAAGwC,UAGpB0D,KAGTlC,gBACMkB,EAAQ,OACP,IAAIlF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAChC0C,EAAMzC,KAAKyD,KAAKvD,IAAI3C,EAAGwC,WAGpB0C,EAGT0B,gBACMC,EAAO,OACN,IAAI7G,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAAK,CAClC6G,EAAKpE,KAAK,QACL,IAAID,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAChCqE,EAAK7G,GAAGyC,KAAKyD,KAAKvD,IAAI3C,EAAGwC,WAGtBqE,EAGTC,gBACSZ,KAAKU,YAGdG,qBACuB,IAAdb,KAAKhE,KAGd8E,wBAC0B,IAAjBd,KAAK/D,QAGd8E,kBACuB,IAAdf,KAAKhE,MAA+B,IAAjBgE,KAAK/D,QAGjC+E,kBACShB,KAAKhE,OAASgE,KAAK/D,QAG5BiD,iBACuB,IAAdc,KAAKhE,MAA+B,IAAjBgE,KAAK/D,QAGjCgF,iBACMjB,KAAKgB,WAAY,KACd,IAAIlH,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,GAAKxC,EAAGwC,OAClB0D,KAAKvD,IAAI3C,EAAGwC,KAAO0D,KAAKvD,IAAIH,EAAGxC,UAC1B,SAIN,SAEF,EAGToH,oBACMpH,EAAI,EACJwC,EAAI,EACJ6E,GAAkB,EAClBD,GAAgB,EAChBE,GAAU,OACPtH,EAAIkG,KAAKhE,MAAQkF,GAAe,KACrC5E,EAAI,EACJ8E,GAAU,EACH9E,EAAI0D,KAAK/D,UAAuB,IAAZmF,GACF,IAAnBpB,KAAKvD,IAAI3C,EAAGwC,GACdA,IAC4B,IAAnB0D,KAAKvD,IAAI3C,EAAGwC,IAAYA,EAAI6E,GACrCC,GAAU,EACVD,EAAiB7E,IAEjB4E,GAAgB,EAChBE,GAAU,GAGdtH,WAEKoH,EAGTG,2BACMvH,EAAI,EACJwC,EAAI,EACJ6E,GAAkB,EAClBE,GAAuB,EACvBD,GAAU,OACPtH,EAAIkG,KAAKhE,MAAQqF,GAAsB,KAC5C/E,EAAI,EACJ8E,GAAU,EACH9E,EAAI0D,KAAK/D,UAAuB,IAAZmF,GACF,IAAnBpB,KAAKvD,IAAI3C,EAAGwC,GACdA,IAC4B,IAAnB0D,KAAKvD,IAAI3C,EAAGwC,IAAYA,EAAI6E,GACrCC,GAAU,EACVD,EAAiB7E,IAEjB+E,GAAuB,EACvBD,GAAU,OAGT,IAAIE,EAAIhF,EAAI,EAAGgF,EAAItB,KAAKhE,KAAMsF,IACV,IAAnBtB,KAAKvD,IAAI3C,EAAGwH,KACdD,GAAuB,GAG3BvH,WAEKuH,EAGTE,kBACMnF,EAAS4D,KAAKwB,QACdC,EAAI,EACJH,EAAI,OACDG,EAAIrF,EAAOJ,MAAQsF,EAAIlF,EAAOH,SAAS,KACxCyF,EAAOD,MACN,IAAI3H,EAAI2H,EAAG3H,EAAIsC,EAAOJ,KAAMlC,IAC3BsC,EAAOK,IAAI3C,EAAGwH,GAAKlF,EAAOK,IAAIiF,EAAMJ,KACtCI,EAAO5H,MAGiB,IAAxBsC,EAAOK,IAAIiF,EAAMJ,GACnBA,QACK,CACLlF,EAAOuF,SAASF,EAAGC,OACfE,EAAMxF,EAAOK,IAAIgF,EAAGH,OACnB,IAAIhF,EAAIgF,EAAGhF,EAAIF,EAAOH,QAASK,IAClCF,EAAOuD,IAAI8B,EAAGnF,EAAGF,EAAOK,IAAIgF,EAAGnF,GAAKsF,OAEjC,IAAI9H,EAAI2H,EAAI,EAAG3H,EAAIsC,EAAOJ,KAAMlC,IAAK,KACpCuB,EAASe,EAAOK,IAAI3C,EAAGwH,GAAKlF,EAAOK,IAAIgF,EAAGH,GAC9ClF,EAAOuD,IAAI7F,EAAGwH,EAAG,OACZ,IAAIhF,EAAIgF,EAAI,EAAGhF,EAAIF,EAAOH,QAASK,IACtCF,EAAOuD,IAAI7F,EAAGwC,EAAGF,EAAOK,IAAI3C,EAAGwC,GAAKF,EAAOK,IAAIgF,EAAGnF,GAAKjB,GAG3DoG,IACAH,YAGGlF,EAGTyF,yBACMzF,EAAS4D,KAAKuB,cACdO,EAAI1F,EAAOH,QACX8F,EAAI3F,EAAOJ,KACXyF,EAAIM,EAAI,OACLN,GAAK,MACe,IAArBrF,EAAO4F,OAAOP,GAChBA,QACK,KACDQ,EAAI,EACJC,GAAQ,OACLD,EAAIF,IAAe,IAAVG,GACW,IAArB9F,EAAOK,IAAIgF,EAAGQ,GAChBC,GAAQ,EAERD,QAGC,IAAInI,EAAI,EAAGA,EAAI2H,EAAG3H,IAAK,KACtBuB,EAASe,EAAOK,IAAI3C,EAAGmI,OACtB,IAAI3F,EAAI2F,EAAG3F,EAAIwF,EAAGxF,IAAK,KACtBsF,EAAMxF,EAAOK,IAAI3C,EAAGwC,GAAKjB,EAASe,EAAOK,IAAIgF,EAAGnF,GACpDF,EAAOuD,IAAI7F,EAAGwC,EAAGsF,IAGrBH,WAGGrF,EAGTuD,YACQ,IAAI/F,MAAM,+BAGlB6C,YACQ,IAAI7C,MAAM,+BAGlB2B,OAAOvC,EAAU,OACQ,iBAAZA,QACH,IAAIK,UAAU,mCAEhB2C,KAAEA,EAAO,EAATC,QAAYA,EAAU,GAAMjD,MAC7BU,OAAOC,UAAUqC,IAASA,GAAQ,QAC/B,IAAI3C,UAAU,uCAEjBK,OAAOC,UAAUsC,IAAYA,GAAW,QACrC,IAAI5C,UAAU,0CAElBqC,EAAS,IAAI8D,EAAOQ,KAAKhE,KAAOA,EAAMgE,KAAK/D,QAAUA,OACpD,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IAC3BZ,EAAOyG,aAAanC,KAAMA,KAAKhE,KAAOlC,EAAGkG,KAAK/D,QAAUK,UAGrDZ,EAGTkE,KAAKb,OACE,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAGyC,UAGZiB,KAGToC,aACSpC,KAAKqC,MAAM,GAGpBC,OAAO7E,GACLD,EAAcwC,KAAMvC,OAChBgC,EAAM,OACL,IAAI3F,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAChC2F,EAAIlD,KAAKyD,KAAKvD,IAAIgB,EAAO3D,WAEpB2F,EAGT8C,aAAa9E,UACJ+B,EAAOgD,UAAUxC,KAAKsC,OAAO7E,IAGtCgF,OAAOhF,EAAOuB,GACZxB,EAAcwC,KAAMvC,GACpBuB,EAAQpB,EAAeoC,KAAMhB,OACxB,IAAIlF,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,SAC3B6F,IAAIlC,EAAO3D,EAAGkF,EAAMlF,WAEpBkG,KAGT2B,SAASe,EAAMC,GACbnF,EAAcwC,KAAM0C,GACpBlF,EAAcwC,KAAM2C,OACf,IAAI7I,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAAK,KACjC8I,EAAO5C,KAAKvD,IAAIiG,EAAM5I,QACrB6F,IAAI+C,EAAM5I,EAAGkG,KAAKvD,IAAIkG,EAAM7I,SAC5B6F,IAAIgD,EAAM7I,EAAG8I,UAEb5C,KAGT6C,UAAUpF,GACRE,EAAiBqC,KAAMvC,OACnBiC,EAAS,OACR,IAAI5F,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAC7B4F,EAAOnD,KAAKyD,KAAKvD,IAAI3C,EAAG2D,WAEnBiC,EAGToD,gBAAgBrF,UACP+B,EAAOuD,aAAa/C,KAAK6C,UAAUpF,IAG5CuF,UAAUvF,EAAOuB,GACfrB,EAAiBqC,KAAMvC,GACvBuB,EAAQjB,EAAkBiC,KAAMhB,OAC3B,IAAIlF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,SACxB6F,IAAI7F,EAAG2D,EAAOuB,EAAMlF,WAEpBkG,KAGTiD,YAAYC,EAASC,GACnBxF,EAAiBqC,KAAMkD,GACvBvF,EAAiBqC,KAAMmD,OAClB,IAAIrJ,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAAK,KAC9B8I,EAAO5C,KAAKvD,IAAI3C,EAAGoJ,QAClBvD,IAAI7F,EAAGoJ,EAASlD,KAAKvD,IAAI3C,EAAGqJ,SAC5BxD,IAAI7F,EAAGqJ,EAASP,UAEhB5C,KAGToD,aAAavF,GACXA,EAASD,EAAeoC,KAAMnC,OACzB,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAOvB,WAGpC0D,KAGTqD,aAAaxF,GACXA,EAASD,EAAeoC,KAAMnC,OACzB,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAOvB,WAGpC0D,KAGTsD,aAAazF,GACXA,EAASD,EAAeoC,KAAMnC,OACzB,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAOvB,WAGpC0D,KAGTuD,aAAa1F,GACXA,EAASD,EAAeoC,KAAMnC,OACzB,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAOvB,WAGpC0D,KAGTwD,gBAAgB3F,GACdA,EAASE,EAAkBiC,KAAMnC,OAC5B,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAO/D,WAGpCkG,KAGTyD,gBAAgB5F,GACdA,EAASE,EAAkBiC,KAAMnC,OAC5B,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAO/D,WAGpCkG,KAGT0D,gBAAgB7F,GACdA,EAASE,EAAkBiC,KAAMnC,OAC5B,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAO/D,WAGpCkG,KAGT2D,gBAAgB9F,GACdA,EAASE,EAAkBiC,KAAMnC,OAC5B,IAAI/D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKuB,EAAO/D,WAGpCkG,KAGT4D,OAAOnG,EAAOsB,GACZvB,EAAcwC,KAAMvC,OACf,IAAI3D,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,SAC3B6F,IAAIlC,EAAO3D,EAAGkG,KAAKvD,IAAIgB,EAAO3D,GAAKiF,UAEnCiB,KAGT6D,UAAUpG,EAAOsB,GACfpB,EAAiBqC,KAAMvC,OAClB,IAAI3D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,SACxB6F,IAAI7F,EAAG2D,EAAOuC,KAAKvD,IAAI3C,EAAG2D,GAASsB,UAEnCiB,KAGTlH,SACMkH,KAAKd,iBACA4E,QAELC,EAAI/D,KAAKvD,IAAI,EAAG,OACf,IAAI3C,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAC5B0D,KAAKvD,IAAI3C,EAAGwC,GAAKyH,IACnBA,EAAI/D,KAAKvD,IAAI3C,EAAGwC,WAIfyH,EAGTC,WACE/E,EAAce,UACV+D,EAAI/D,KAAKvD,IAAI,EAAG,GAChBwH,EAAM,CAAC,EAAG,OACT,IAAInK,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAC5B0D,KAAKvD,IAAI3C,EAAGwC,GAAKyH,IACnBA,EAAI/D,KAAKvD,IAAI3C,EAAGwC,GAChB2H,EAAI,GAAKnK,EACTmK,EAAI,GAAK3H,UAIR2H,EAGTvJ,SACMsF,KAAKd,iBACA4E,QAELC,EAAI/D,KAAKvD,IAAI,EAAG,OACf,IAAI3C,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAC5B0D,KAAKvD,IAAI3C,EAAGwC,GAAKyH,IACnBA,EAAI/D,KAAKvD,IAAI3C,EAAGwC,WAIfyH,EAGTG,WACEjF,EAAce,UACV+D,EAAI/D,KAAKvD,IAAI,EAAG,GAChBwH,EAAM,CAAC,EAAG,OACT,IAAInK,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAC5B0D,KAAKvD,IAAI3C,EAAGwC,GAAKyH,IACnBA,EAAI/D,KAAKvD,IAAI3C,EAAGwC,GAChB2H,EAAI,GAAKnK,EACTmK,EAAI,GAAK3H,UAIR2H,EAGTjC,OAAOvC,MACLjC,EAAcwC,KAAMP,GAChBO,KAAKd,iBACA4E,QAELC,EAAI/D,KAAKvD,IAAIgD,EAAK,OACjB,IAAI3F,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAC5BkG,KAAKvD,IAAIgD,EAAK3F,GAAKiK,IACrBA,EAAI/D,KAAKvD,IAAIgD,EAAK3F,WAGfiK,EAGTI,YAAY1E,GACVjC,EAAcwC,KAAMP,GACpBR,EAAce,UACV+D,EAAI/D,KAAKvD,IAAIgD,EAAK,GAClBwE,EAAM,CAACxE,EAAK,OACX,IAAI3F,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAC5BkG,KAAKvD,IAAIgD,EAAK3F,GAAKiK,IACrBA,EAAI/D,KAAKvD,IAAIgD,EAAK3F,GAClBmK,EAAI,GAAKnK,UAGNmK,EAGTG,OAAO3E,MACLjC,EAAcwC,KAAMP,GAChBO,KAAKd,iBACA4E,QAELC,EAAI/D,KAAKvD,IAAIgD,EAAK,OACjB,IAAI3F,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAC5BkG,KAAKvD,IAAIgD,EAAK3F,GAAKiK,IACrBA,EAAI/D,KAAKvD,IAAIgD,EAAK3F,WAGfiK,EAGTM,YAAY5E,GACVjC,EAAcwC,KAAMP,GACpBR,EAAce,UACV+D,EAAI/D,KAAKvD,IAAIgD,EAAK,GAClBwE,EAAM,CAACxE,EAAK,OACX,IAAI3F,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAC5BkG,KAAKvD,IAAIgD,EAAK3F,GAAKiK,IACrBA,EAAI/D,KAAKvD,IAAIgD,EAAK3F,GAClBmK,EAAI,GAAKnK,UAGNmK,EAGTK,UAAU5E,MACR/B,EAAiBqC,KAAMN,GACnBM,KAAKd,iBACA4E,QAELC,EAAI/D,KAAKvD,IAAI,EAAGiD,OACf,IAAI5F,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IACzBkG,KAAKvD,IAAI3C,EAAG4F,GAAUqE,IACxBA,EAAI/D,KAAKvD,IAAI3C,EAAG4F,WAGbqE,EAGTQ,eAAe7E,GACb/B,EAAiBqC,KAAMN,GACvBT,EAAce,UACV+D,EAAI/D,KAAKvD,IAAI,EAAGiD,GAChBuE,EAAM,CAAC,EAAGvE,OACT,IAAI5F,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IACzBkG,KAAKvD,IAAI3C,EAAG4F,GAAUqE,IACxBA,EAAI/D,KAAKvD,IAAI3C,EAAG4F,GAChBuE,EAAI,GAAKnK,UAGNmK,EAGTO,UAAU9E,MACR/B,EAAiBqC,KAAMN,GACnBM,KAAKd,iBACA4E,QAELC,EAAI/D,KAAKvD,IAAI,EAAGiD,OACf,IAAI5F,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IACzBkG,KAAKvD,IAAI3C,EAAG4F,GAAUqE,IACxBA,EAAI/D,KAAKvD,IAAI3C,EAAG4F,WAGbqE,EAGTU,eAAe/E,GACb/B,EAAiBqC,KAAMN,GACvBT,EAAce,UACV+D,EAAI/D,KAAKvD,IAAI,EAAGiD,GAChBuE,EAAM,CAAC,EAAGvE,OACT,IAAI5F,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IACzBkG,KAAKvD,IAAI3C,EAAG4F,GAAUqE,IACxBA,EAAI/D,KAAKvD,IAAI3C,EAAG4F,GAChBuE,EAAI,GAAKnK,UAGNmK,EAGTS,WACMhK,EAAMH,KAAKG,IAAIsF,KAAKhE,KAAMgE,KAAK/D,SAC/ByI,EAAO,OACN,IAAI5K,EAAI,EAAGA,EAAIY,EAAKZ,IACvB4K,EAAKnI,KAAKyD,KAAKvD,IAAI3C,EAAGA,WAEjB4K,EAGTC,KAAKC,EAAO,iBACNxI,EAAS,KACA,QAATwI,SACK5E,KAAKlH,MACP,GAAa,cAAT8L,EAAsB,KAC1B,IAAI9K,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAChCF,GAAkB4D,KAAKvD,IAAI3C,EAAGwC,GAAK0D,KAAKvD,IAAI3C,EAAGwC,UAG5C/B,KAAKsK,KAAKzI,SAEX,IAAInB,WAAY,sBAAqB2J,KAI/CE,oBACMC,EAAM,MACL,IAAIjL,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAChCyI,GAAO/E,KAAKvD,IAAI3C,EAAGwC,QACdqD,IAAI7F,EAAGwC,EAAGyI,UAGZ/E,KAGTgF,IAAIC,GACE9F,EAAemB,SAAS2E,KAAUA,EAAUA,EAAQnH,iBACpDoH,EAAUlF,KAAKlC,eACfoH,EAAQhM,SAAW+L,EAAQ/L,aACvB,IAAI+B,WAAW,yCAEnB+J,EAAM,MACL,IAAIlL,EAAI,EAAGA,EAAIoL,EAAQhM,OAAQY,IAClCkL,GAAOE,EAAQpL,GAAKmL,EAAQnL,UAEvBkL,EAGTG,KAAKC,GACHA,EAAQ5F,EAAOa,YAAY+E,OAEvBtD,EAAI9B,KAAKhE,KACT+F,EAAI/B,KAAK/D,QACTgG,EAAImD,EAAMnJ,QAEVG,EAAS,IAAIoD,EAAOsC,EAAGG,GAEvBoD,EAAQ,IAAIC,aAAavD,OACxB,IAAIzF,EAAI,EAAGA,EAAI2F,EAAG3F,IAAK,KACrB,IAAIgF,EAAI,EAAGA,EAAIS,EAAGT,IACrB+D,EAAM/D,GAAK8D,EAAM3I,IAAI6E,EAAGhF,OAGrB,IAAIxC,EAAI,EAAGA,EAAIgI,EAAGhI,IAAK,KACtByL,EAAI,MACH,IAAIjE,EAAI,EAAGA,EAAIS,EAAGT,IACrBiE,GAAKvF,KAAKvD,IAAI3C,EAAGwH,GAAK+D,EAAM/D,GAG9BlF,EAAOuD,IAAI7F,EAAGwC,EAAGiJ,WAGdnJ,EAGToJ,YAAYJ,GACVA,EAAQ5F,EAAOa,YAAY+E,OACvBhJ,EAAS,IAAIoD,EAAO,EAAG,SACrBiG,EAAMzF,KAAKvD,IAAI,EAAG,GAClBiJ,EAAMN,EAAM3I,IAAI,EAAG,GACnBkJ,EAAM3F,KAAKvD,IAAI,EAAG,GAClBmJ,EAAMR,EAAM3I,IAAI,EAAG,GACnBoJ,EAAM7F,KAAKvD,IAAI,EAAG,GAClBqJ,EAAMV,EAAM3I,IAAI,EAAG,GACnBsJ,EAAM/F,KAAKvD,IAAI,EAAG,GAClBuJ,EAAMZ,EAAM3I,IAAI,EAAG,GAGnBwJ,GAAMR,EAAMM,IAAQL,EAAMM,GAC1BE,GAAML,EAAME,GAAOL,EACnBS,EAAKV,GAAOG,EAAMI,GAClBI,EAAKL,GAAOD,EAAMJ,GAClBW,GAAMZ,EAAME,GAAOK,EAKnBM,EAAML,EAAKG,EAAKC,GAHVV,EAAMI,IAAQD,EAAME,GAI1BO,EAAMJ,EAAKE,EACXG,EAAMN,EAAKE,EACXK,EAAMR,EAAKC,EAAKC,GAPVN,EAAMJ,IAAQC,EAAME,UAShCxJ,EAAOuD,IAAI,EAAG,EAAG2G,GACjBlK,EAAOuD,IAAI,EAAG,EAAG4G,GACjBnK,EAAOuD,IAAI,EAAG,EAAG6G,GACjBpK,EAAOuD,IAAI,EAAG,EAAG8G,GACVrK,EAGTsK,YAAYtB,GACVA,EAAQ5F,EAAOa,YAAY+E,OACvBhJ,EAAS,IAAIoD,EAAO,EAAG,SAErBmH,EAAM3G,KAAKvD,IAAI,EAAG,GAClBmK,EAAM5G,KAAKvD,IAAI,EAAG,GAClBoK,EAAM7G,KAAKvD,IAAI,EAAG,GAClBqK,EAAM9G,KAAKvD,IAAI,EAAG,GAClBgJ,EAAMzF,KAAKvD,IAAI,EAAG,GAClBkJ,EAAM3F,KAAKvD,IAAI,EAAG,GAClBsK,EAAM/G,KAAKvD,IAAI,EAAG,GAClBoJ,EAAM7F,KAAKvD,IAAI,EAAG,GAClBsJ,EAAM/F,KAAKvD,IAAI,EAAG,GAElBuK,EAAM5B,EAAM3I,IAAI,EAAG,GACnBwK,EAAM7B,EAAM3I,IAAI,EAAG,GACnByK,EAAM9B,EAAM3I,IAAI,EAAG,GACnB0K,EAAM/B,EAAM3I,IAAI,EAAG,GACnBiJ,EAAMN,EAAM3I,IAAI,EAAG,GACnBmJ,EAAMR,EAAM3I,IAAI,EAAG,GACnB2K,EAAMhC,EAAM3I,IAAI,EAAG,GACnBqJ,EAAMV,EAAM3I,IAAI,EAAG,GACnBuJ,EAAMZ,EAAM3I,IAAI,EAAG,GAGnByJ,GAAMS,EAAMG,KAASG,EAAMvB,GAE3BU,IAAOO,EAAMG,EAAMrB,IAAQuB,EAAMC,EAAMvB,GACvCW,GAAMS,EAAMrB,KAASuB,EAAMC,GAC3BI,EAAKV,EAAMK,EACXM,IAAOX,EAAMI,EAAMlB,IAAQmB,EAAME,EAAMtB,GACvC2B,IAAOZ,EAAMI,IAAQG,EAAMtB,GAC3B4B,GAAMT,EAAMlB,KAASmB,EAAME,GAG3BO,IAAQZ,EAAMhB,EAAME,IAAQL,EAAM0B,EAAMtB,GACxC4B,GAAOb,EAAMd,IAAQL,EAAMI,GAC3B6B,EAAMd,EAAMO,EACZQ,GAAO/B,EAAME,KAASqB,EAAMtB,GAC5B+B,IAAQhB,EAAMpB,EAAME,IAAQC,EAAMwB,EAAMpB,GACxC8B,GAAOjB,EAAMlB,IAAQC,EAAMI,GAC3B+B,GAAOtC,EAAME,KAASyB,EAAMpB,GAO5BM,EAAMe,EAAKM,EANLf,EAAMO,EAOZZ,GAzBMI,EAAMC,EAAMC,EAAMC,EAAMrB,EAAMI,EAAME,GAAOL,EAyBtCU,EAAKC,EAAKgB,EAAKI,EAAME,EAAMC,EACtCI,EAAMX,EAAKC,EAAKE,GAjBTb,EAAMC,EAAMC,EAAMpB,EAAME,EAAMoB,EAAMlB,GAAOD,EAiBvB+B,EAAME,EAAME,EACvCvB,EAAMN,EAzBDT,IAAQuB,EAAMC,EAAME,EAAMzB,EAAME,EAAMwB,EAAMpB,GAyBjCI,EAAKiB,EAAKM,EAAME,EAAMC,EACtCrB,EAAMP,EAAKE,EAAKC,EAAKgB,EATf1B,EAAMG,EAUZmC,EAAMN,EAAME,EAAMC,EAAMC,EATlBjB,EAAMI,EAUZgB,EAAMb,EAAKC,EAAKC,EApBV1B,IAAQmB,EAAME,EAAMC,EAAMzB,EAAME,EAAMwB,EAAMtB,GAoBvB2B,EAAMC,EAAMC,EACvCQ,EAAMV,EAAMC,EAAMC,EAAMC,EAVlBb,EAAME,EAWZmB,EAAMf,EAAKC,EAAKC,EAAKC,EAVfzB,EAAMC,SAYlB5J,EAAOuD,IAAI,EAAG,EAAG2G,GACjBlK,EAAOuD,IAAI,EAAG,EAAG4G,GACjBnK,EAAOuD,IAAI,EAAG,EAAGqI,GACjB5L,EAAOuD,IAAI,EAAG,EAAG6G,GACjBpK,EAAOuD,IAAI,EAAG,EAAG8G,GACjBrK,EAAOuD,IAAI,EAAG,EAAGsI,GACjB7L,EAAOuD,IAAI,EAAG,EAAGuI,GACjB9L,EAAOuD,IAAI,EAAG,EAAGwI,GACjB/L,EAAOuD,IAAI,EAAG,EAAGyI,GACVhM,EAGTiM,aAAa5N,GACXA,EAAI+E,EAAOa,YAAY5F,OACnBH,EAAI0F,KAAKwB,QACT8G,EAAKhO,EAAE0B,KACPuM,EAAKjO,EAAE2B,QACPuM,EAAK/N,EAAEuB,KACPyM,EAAKhO,EAAEwB,iBAUFyM,EAAMC,EAAK3M,EAAM4M,OACpBzK,EAAIwK,EAAI3M,KACRuC,EAAIoK,EAAI1M,WACRkC,IAAMnC,GAAQuC,IAAMqK,SACfD,EACF,KACDE,EAAW1J,EAAec,MAAMjE,EAAM4M,UAC1CC,EAAWA,EAAS1G,aAAawG,EAAK,EAAG,GAClCE,GAjBPN,IAAOC,GAETM,QAAQC,KACL,eAAcT,OAAQC,SAAUC,OAAQC,0CAsBzCtK,EAAI5D,KAAKzB,IAAIwP,EAAIE,GACjBjK,EAAIhE,KAAKzB,IAAIyP,EAAIE,UACrBnO,EAAIoO,EAAMpO,EAAG6D,EAAGI,YAIPyK,EAAUC,EAAGC,EAAGlN,EAAM4M,MAEzB5M,GAAQ,KAAO4M,GAAQ,WAClBK,EAAE9D,KAAK+D,GAIZlN,EAAO,GAAM,GAAK4M,EAAO,GAAM,GACjCK,EAAIP,EAAMO,EAAGjN,EAAO,EAAG4M,EAAO,GAC9BM,EAAIR,EAAMQ,EAAGlN,EAAO,EAAG4M,EAAO,IACrB5M,EAAO,GAAM,GACtBiN,EAAIP,EAAMO,EAAGjN,EAAO,EAAG4M,GACvBM,EAAIR,EAAMQ,EAAGlN,EAAO,EAAG4M,IACdA,EAAO,GAAM,IACtBK,EAAIP,EAAMO,EAAGjN,EAAM4M,EAAO,GAC1BM,EAAIR,EAAMQ,EAAGlN,EAAM4M,EAAO,QAGxBO,EAAWC,SAASH,EAAEjN,KAAO,EAAG,IAChCqN,EAAWD,SAASH,EAAEhN,QAAU,EAAG,IAEnCwJ,EAAMwD,EAAEK,UAAU,EAAGH,EAAW,EAAG,EAAGE,EAAW,GACjD3D,EAAMwD,EAAEI,UAAU,EAAGH,EAAW,EAAG,EAAGE,EAAW,GAEjD1D,EAAMsD,EAAEK,UAAU,EAAGH,EAAW,EAAGE,EAAUJ,EAAEhN,QAAU,GACzD2J,EAAMsD,EAAEI,UAAU,EAAGH,EAAW,EAAGE,EAAUH,EAAEjN,QAAU,GAEzD4J,EAAMoD,EAAEK,UAAUH,EAAUF,EAAEjN,KAAO,EAAG,EAAGqN,EAAW,GACtDvD,EAAMoD,EAAEI,UAAUH,EAAUD,EAAElN,KAAO,EAAG,EAAGqN,EAAW,GAEtDtD,EAAMkD,EAAEK,UAAUH,EAAUF,EAAEjN,KAAO,EAAGqN,EAAUJ,EAAEhN,QAAU,GAC9D+J,EAAMkD,EAAEI,UAAUH,EAAUD,EAAElN,KAAO,EAAGqN,EAAUH,EAAEjN,QAAU,GAG9DgK,EAAK+C,EACP7J,EAAeoK,IAAI9D,EAAKM,GACxB5G,EAAeoK,IAAI7D,EAAKM,GACxBmD,EACAE,GAEEnD,EAAK8C,EAAU7J,EAAeoK,IAAI1D,EAAKE,GAAML,EAAKyD,EAAUE,GAC5DlD,EAAK6C,EAAUvD,EAAKtG,EAAeqK,IAAI5D,EAAKI,GAAMmD,EAAUE,GAC5DjD,EAAK4C,EAAUjD,EAAK5G,EAAeqK,IAAI1D,EAAKJ,GAAMyD,EAAUE,GAC5DhD,EAAK2C,EAAU7J,EAAeoK,IAAI9D,EAAKE,GAAMK,EAAKmD,EAAUE,GAC5DhC,EAAK2B,EACP7J,EAAeqK,IAAI3D,EAAKJ,GACxBtG,EAAeoK,IAAI7D,EAAKE,GACxBuD,EACAE,GAEE/B,EAAK0B,EACP7J,EAAeqK,IAAI7D,EAAKI,GACxB5G,EAAeoK,IAAIzD,EAAKE,GACxBmD,EACAE,GAIE5C,EAAMtH,EAAeoK,IAAItD,EAAIG,GACjCK,EAAI+C,IAAInD,GACRI,EAAI8C,IAAIjC,OACJW,EAAM9I,EAAeoK,IAAIpD,EAAIE,GAC7B8B,EAAMhJ,EAAeoK,IAAIrD,EAAIE,GAC7BgC,EAAMjJ,EAAeqK,IAAIvD,EAAIC,GACjCkC,EAAImB,IAAIpD,GACRiC,EAAImB,IAAIlC,OAGJwB,EAAW1J,EAAec,MAAM,EAAIwG,EAAIzK,KAAM,EAAIyK,EAAIxK,gBAC1D4M,EAAWA,EAAS1G,aAAasE,EAAK,EAAG,GACzCoC,EAAWA,EAAS1G,aAAa8F,EAAKxB,EAAIzK,KAAM,GAChD6M,EAAWA,EAAS1G,aAAagG,EAAK,EAAG1B,EAAIxK,SAC7C4M,EAAWA,EAAS1G,aAAaiG,EAAK3B,EAAIzK,KAAMyK,EAAIxK,SAC7C4M,EAASS,UAAU,EAAGtN,EAAO,EAAG,EAAG4M,EAAO,GAE5CI,CAAU1O,EA9EjBG,EAAIiO,EAAMjO,EAAG0D,EAAGI,GA8EOJ,EAAGI,GAG5BkL,UAAUzQ,EAAU,OACK,iBAAZA,QACH,IAAIK,UAAU,mCAEhBqB,IAAEA,EAAM,EAAR5B,IAAWA,EAAM,GAAME,MACxBU,OAAOgQ,SAAShP,GAAM,MAAM,IAAIrB,UAAU,4BAC1CK,OAAOgQ,SAAS5Q,GAAM,MAAM,IAAIO,UAAU,2BAC3CqB,GAAO5B,EAAK,MAAM,IAAImC,WAAW,oCACjCsE,EAAY,IAAIC,EAAOQ,KAAKhE,KAAMgE,KAAK/D,aACtC,IAAInC,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAAK,OAC5B2F,EAAMO,KAAKsC,OAAOxI,GACpB2F,EAAIvG,OAAS,GACf0B,EAAQ6E,EAAK,CAAE/E,IAAAA,EAAK5B,IAAAA,EAAK+B,OAAQ4E,IAEnCF,EAAUkD,OAAO3I,EAAG2F,UAEfF,EAGToK,aAAa3Q,EAAU,OACE,iBAAZA,QACH,IAAIK,UAAU,mCAEhBqB,IAAEA,EAAM,EAAR5B,IAAWA,EAAM,GAAME,MACxBU,OAAOgQ,SAAShP,GAAM,MAAM,IAAIrB,UAAU,4BAC1CK,OAAOgQ,SAAS5Q,GAAM,MAAM,IAAIO,UAAU,2BAC3CqB,GAAO5B,EAAK,MAAM,IAAImC,WAAW,oCACjCsE,EAAY,IAAIC,EAAOQ,KAAKhE,KAAMgE,KAAK/D,aACtC,IAAInC,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAAK,OAC/B4F,EAASM,KAAK6C,UAAU/I,GAC1B4F,EAAOxG,QACT0B,EAAQ8E,EAAQ,CACdhF,IAAKA,EACL5B,IAAKA,EACL+B,OAAQ6E,IAGZH,EAAUyD,UAAUlJ,EAAG4F,UAElBH,EAGTqK,iBACQC,EAAStP,KAAKuP,KAAK9J,KAAK/D,QAAU,OACnC,IAAInC,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAIuN,EAAQvN,IAAK,KAC3ByN,EAAQ/J,KAAKvD,IAAI3C,EAAGwC,GACpB0N,EAAOhK,KAAKvD,IAAI3C,EAAGkG,KAAK/D,QAAU,EAAIK,QACrCqD,IAAI7F,EAAGwC,EAAG0N,QACVrK,IAAI7F,EAAGkG,KAAK/D,QAAU,EAAIK,EAAGyN,UAG/B/J,KAGTiK,oBACQJ,EAAStP,KAAKuP,KAAK9J,KAAKhE,KAAO,OAChC,IAAIM,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,QAC3B,IAAIxC,EAAI,EAAGA,EAAI+P,EAAQ/P,IAAK,KAC3BiQ,EAAQ/J,KAAKvD,IAAI3C,EAAGwC,GACpB0N,EAAOhK,KAAKvD,IAAIuD,KAAKhE,KAAO,EAAIlC,EAAGwC,QAClCqD,IAAI7F,EAAGwC,EAAG0N,QACVrK,IAAIK,KAAKhE,KAAO,EAAIlC,EAAGwC,EAAGyN,UAG5B/J,KAGTkK,iBAAiB9E,GACfA,EAAQ5F,EAAOa,YAAY+E,OAEvBtD,EAAI9B,KAAKhE,KACT+F,EAAI/B,KAAK/D,QACTgG,EAAImD,EAAMpJ,KACVmO,EAAI/E,EAAMnJ,QAEVG,EAAS,IAAIoD,EAAOsC,EAAIG,EAAGF,EAAIoI,OAC9B,IAAIrQ,EAAI,EAAGA,EAAIgI,EAAGhI,QAChB,IAAIwC,EAAI,EAAGA,EAAIyF,EAAGzF,QAChB,IAAIgF,EAAI,EAAGA,EAAIW,EAAGX,QAChB,IAAIpB,EAAI,EAAGA,EAAIiK,EAAGjK,IACrB9D,EAAOuD,IAAIsC,EAAInI,EAAIwH,EAAG6I,EAAI7N,EAAI4D,EAAGF,KAAKvD,IAAI3C,EAAGwC,GAAK8I,EAAM3I,IAAI6E,EAAGpB,WAKhE9D,EAGTgO,gBACMhO,EAAS,IAAIoD,EAAOQ,KAAK/D,QAAS+D,KAAKhE,UACtC,IAAIlC,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,IAChCF,EAAOuD,IAAIrD,EAAGxC,EAAGkG,KAAKvD,IAAI3C,EAAGwC,WAG1BF,EAGTiO,SAASC,EAAkBC,OACpB,IAAIzQ,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,SACxB2I,OAAO3I,EAAGkG,KAAKsC,OAAOxI,GAAG0Q,KAAKF,WAE9BtK,KAGTyK,YAAYH,EAAkBC,OACvB,IAAIzQ,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,SAC3BkJ,UAAUlJ,EAAGkG,KAAK6C,UAAU/I,GAAG0Q,KAAKF,WAEpCtK,KAGTsJ,UAAU7K,EAAUC,EAAQC,EAAaC,GACvCJ,EAAWwB,KAAMvB,EAAUC,EAAQC,EAAaC,OAC5CW,EAAY,IAAIC,EAClBd,EAASD,EAAW,EACpBG,EAAYD,EAAc,OAEvB,IAAI7E,EAAI2E,EAAU3E,GAAK4E,EAAQ5E,QAC7B,IAAIwC,EAAIqC,EAAarC,GAAKsC,EAAWtC,IACxCiD,EAAUI,IAAI7F,EAAI2E,EAAUnC,EAAIqC,EAAaqB,KAAKvD,IAAI3C,EAAGwC,WAGtDiD,EAGTmL,aAAaC,EAAShM,EAAaC,WACbzF,IAAhBwF,IAA2BA,EAAc,QAC3BxF,IAAdyF,IAAyBA,EAAYoB,KAAK/D,QAAU,GAEtD0C,EAAcC,GACdD,EAAc,GACdA,GAAeqB,KAAK/D,SACpB2C,EAAY,GACZA,GAAaoB,KAAK/D,cAEZ,IAAIhB,WAAW,6BAGnBsE,EAAY,IAAIC,EAAOmL,EAAQzR,OAAQ0F,EAAYD,EAAc,OAChE,IAAI7E,EAAI,EAAGA,EAAI6Q,EAAQzR,OAAQY,QAC7B,IAAIwC,EAAIqC,EAAarC,GAAKsC,EAAWtC,IAAK,IACzCqO,EAAQ7Q,GAAK,GAAK6Q,EAAQ7Q,IAAMkG,KAAKhE,WACjC,IAAIf,WAAY,2BAA0B0P,EAAQ7Q,MAE1DyF,EAAUI,IAAI7F,EAAGwC,EAAIqC,EAAaqB,KAAKvD,IAAIkO,EAAQ7Q,GAAIwC,WAGpDiD,EAGTqL,gBAAgBD,EAASlM,EAAUC,WAChBvF,IAAbsF,IAAwBA,EAAW,QACxBtF,IAAXuF,IAAsBA,EAASsB,KAAKhE,KAAO,GAE7CyC,EAAWC,GACXD,EAAW,GACXA,GAAYuB,KAAKhE,MACjB0C,EAAS,GACTA,GAAUsB,KAAKhE,WAET,IAAIf,WAAW,6BAGnBsE,EAAY,IAAIC,EAAOd,EAASD,EAAW,EAAGkM,EAAQzR,YACrD,IAAIY,EAAI,EAAGA,EAAI6Q,EAAQzR,OAAQY,QAC7B,IAAIwC,EAAImC,EAAUnC,GAAKoC,EAAQpC,IAAK,IACnCqO,EAAQ7Q,GAAK,GAAK6Q,EAAQ7Q,IAAMkG,KAAK/D,cACjC,IAAIhB,WAAY,8BAA6B0P,EAAQ7Q,MAE7DyF,EAAUI,IAAIrD,EAAImC,EAAU3E,EAAGkG,KAAKvD,IAAIH,EAAGqO,EAAQ7Q,YAGhDyF,EAGT4C,aAAazG,EAAQ+C,EAAUE,OAC7BjD,EAAS8D,EAAOa,YAAY3E,IACjBwD,iBACFc,KAITxB,EAAWwB,KAAMvB,EAFJA,EAAW/C,EAAOM,KAAO,EAEH2C,EADnBA,EAAcjD,EAAOO,QAAU,OAE1C,IAAInC,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,SAC7BqD,IAAIlB,EAAW3E,EAAG6E,EAAcrC,EAAGZ,EAAOe,IAAI3C,EAAGwC,WAGnD0D,KAGT6K,UAAU5M,EAAYK,OAChBqM,EDxoCD,SAAsBjP,EAAQuC,EAAYK,SACxC,CACLmB,IAAKzB,EAAgBtC,EAAQuC,GAC7ByB,OAAQrB,EAAmB3C,EAAQ4C,ICqoCrBwM,CAAa9K,KAAM/B,EAAYK,GACzCiB,EAAY,IAAIC,EAAOvB,EAAW/E,OAAQoF,EAAcpF,YACvD,IAAIY,EAAI,EAAGA,EAAI6Q,EAAQlL,IAAIvG,OAAQY,IAAK,KACvCiR,EAAWJ,EAAQlL,IAAI3F,OACtB,IAAIwC,EAAI,EAAGA,EAAIqO,EAAQjL,OAAOxG,OAAQoD,IAAK,KAC1C0O,EAAcL,EAAQjL,OAAOpD,GACjCiD,EAAUI,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAIsO,EAAUC,YAGpCzL,EAGT0L,YACMvQ,EAAMH,KAAKG,IAAIsF,KAAKhE,KAAMgE,KAAK/D,SAC/BgP,EAAQ,MACP,IAAInR,EAAI,EAAGA,EAAIY,EAAKZ,IACvBmR,GAASjL,KAAKvD,IAAI3C,EAAGA,UAEhBmR,EAGTzJ,YACMjC,EAAY,IAAIC,EAAOQ,KAAKhE,KAAMgE,KAAK/D,aACtC,IAAIwD,EAAM,EAAGA,EAAMO,KAAKhE,KAAMyD,QAC5B,IAAIC,EAAS,EAAGA,EAASM,KAAK/D,QAASyD,IAC1CH,EAAUI,IAAIF,EAAKC,EAAQM,KAAKvD,IAAIgD,EAAKC,WAGtCH,EAGTwF,IAAImG,UACMA,OACD,aCzuCJ,SAAkBxP,OACnBqJ,EAAMjG,EAASpD,EAAOM,UACrB,IAAIlC,EAAI,EAAGA,EAAI4B,EAAOM,OAAQlC,MAC5B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,UAAWK,EACpCyI,EAAIjL,IAAM4B,EAAOe,IAAI3C,EAAGwC,UAGrByI,EDmuCMoG,CAASnL,UACb,gBCjuCJ,SAAqBtE,OACtBqJ,EAAMjG,EAASpD,EAAOO,aACrB,IAAInC,EAAI,EAAGA,EAAI4B,EAAOM,OAAQlC,MAC5B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,UAAWK,EACpCyI,EAAIzI,IAAMZ,EAAOe,IAAI3C,EAAGwC,UAGrByI,ED2tCMqG,CAAYpL,gBAChB7G,SCztCJ,SAAgBuC,OACjBqI,EAAI,MACH,IAAIjK,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCyH,GAAKrI,EAAOe,IAAI3C,EAAGwC,UAGhByH,EDmtCMsH,CAAOrL,oBAER,IAAIpG,MAAO,mBAAkBsR,MAIzCI,QAAQJ,UACEA,OACD,aCxtCJ,SAAsBxP,OACvBqJ,EAAMjG,EAASpD,EAAOM,KAAM,OAC3B,IAAIlC,EAAI,EAAGA,EAAI4B,EAAOM,OAAQlC,MAC5B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,UAAWK,EACpCyI,EAAIjL,IAAM4B,EAAOe,IAAI3C,EAAGwC,UAGrByI,EDktCMwG,CAAavL,UACjB,gBChtCJ,SAAyBtE,OAC1BqJ,EAAMjG,EAASpD,EAAOO,QAAS,OAC9B,IAAInC,EAAI,EAAGA,EAAI4B,EAAOM,OAAQlC,MAC5B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,UAAWK,EACpCyI,EAAIzI,IAAMZ,EAAOe,IAAI3C,EAAGwC,UAGrByI,ED0sCMyG,CAAgBxL,gBACpB7G,SCxsCJ,SAAoBuC,OACrBqI,EAAI,MACH,IAAIjK,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCyH,GAAKrI,EAAOe,IAAI3C,EAAGwC,UAGhByH,EDksCM0H,CAAWzL,oBAEZ,IAAIpG,MAAO,mBAAkBsR,MAIzCQ,KAAKR,SACGnG,EAAM/E,KAAK+E,IAAImG,UACbA,OACD,UACE,IAAIpR,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAC7BiL,EAAIjL,IAAMkG,KAAK/D,eAEV8I,MAEJ,aACE,IAAIjL,EAAI,EAAGA,EAAIkG,KAAK/D,QAASnC,IAChCiL,EAAIjL,IAAMkG,KAAKhE,YAEV+I,YAEJ5L,SACI4L,EAAM/E,KAAK2L,mBAEZ,IAAI/R,MAAO,mBAAkBsR,MAIzCU,SAASV,EAAIlS,EAAU,OACH,iBAAPkS,IACTlS,EAAUkS,EACVA,OAAK/R,GAEgB,iBAAZH,QACH,IAAIK,UAAU,mCAEhBwS,SAAEA,GAAW,EAAbH,KAAmBA,EAAO1L,KAAK0L,KAAKR,IAAQlS,KAC1B,kBAAb6S,QACH,IAAIxS,UAAU,qCAEd6R,OACD,UACEpQ,MAAM1B,QAAQsS,SACX,IAAIrS,UAAU,gCC1uCvB,SAAuBqC,EAAQmQ,EAAUH,SACxC1P,EAAON,EAAOM,KACd4M,EAAOlN,EAAOO,QACd2P,EAAW,OAEZ,IAAI9R,EAAI,EAAGA,EAAIkC,EAAMlC,IAAK,KACzBgS,EAAO,EACPC,EAAO,EACPzR,EAAI,MACH,IAAIgC,EAAI,EAAGA,EAAIsM,EAAMtM,IACxBhC,EAAIoB,EAAOe,IAAI3C,EAAGwC,GAAKoP,EAAK5R,GAC5BgS,GAAQxR,EACRyR,GAAQzR,EAAIA,EAEVuR,EACFD,EAASrP,MAAMwP,EAAQD,EAAOA,EAAQlD,IAASA,EAAO,IAEtDgD,EAASrP,MAAMwP,EAAQD,EAAOA,EAAQlD,GAAQA,UAG3CgD,EDwtCMI,CAAchM,KAAM6L,EAAUH,OAElC,aACE5Q,MAAM1B,QAAQsS,SACX,IAAIrS,UAAU,gCCztCvB,SAA0BqC,EAAQmQ,EAAUH,SAC3C1P,EAAON,EAAOM,KACd4M,EAAOlN,EAAOO,QACd2P,EAAW,OAEZ,IAAItP,EAAI,EAAGA,EAAIsM,EAAMtM,IAAK,KACzBwP,EAAO,EACPC,EAAO,EACPzR,EAAI,MACH,IAAIR,EAAI,EAAGA,EAAIkC,EAAMlC,IACxBQ,EAAIoB,EAAOe,IAAI3C,EAAGwC,GAAKoP,EAAKpP,GAC5BwP,GAAQxR,EACRyR,GAAQzR,EAAIA,EAEVuR,EACFD,EAASrP,MAAMwP,EAAQD,EAAOA,EAAQ9P,IAASA,EAAO,IAEtD4P,EAASrP,MAAMwP,EAAQD,EAAOA,EAAQ9P,GAAQA,UAG3C4P,EDusCMK,CAAiBjM,KAAM6L,EAAUH,aAErCvS,KACiB,iBAATuS,QACH,IAAIrS,UAAU,gCCxsCvB,SAAqBqC,EAAQmQ,EAAUH,SACtC1P,EAAON,EAAOM,KACd4M,EAAOlN,EAAOO,QACd0P,EAAO3P,EAAO4M,MAEhBkD,EAAO,EACPC,EAAO,EACPzR,EAAI,MACH,IAAIR,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIsM,EAAMtM,IACxBhC,EAAIoB,EAAOe,IAAI3C,EAAGwC,GAAKoP,EACvBI,GAAQxR,EACRyR,GAAQzR,EAAIA,SAGZuR,GACME,EAAQD,EAAOA,EAAQH,IAASA,EAAO,IAEvCI,EAAQD,EAAOA,EAAQH,GAAQA,EDwrC5BO,CAAYlM,KAAM6L,EAAUH,iBAG7B,IAAI9R,MAAO,mBAAkBsR,MAIzCiB,kBAAkBjB,EAAIlS,GACF,iBAAPkS,IACTlS,EAAUkS,EACVA,OAAK/R,SAEDyS,EAAW5L,KAAK4L,SAASV,EAAIlS,WACxBG,IAAP+R,SACK3Q,KAAKsK,KAAK+G,OAEZ,IAAI9R,EAAI,EAAGA,EAAI8R,EAAS1S,OAAQY,IACnC8R,EAAS9R,GAAKS,KAAKsK,KAAK+G,EAAS9R,WAE5B8R,EAIXQ,OAAOlB,EAAIlS,EAAU,OACD,iBAAPkS,IACTlS,EAAUkS,EACVA,OAAK/R,GAEgB,iBAAZH,QACH,IAAIK,UAAU,mCAEhB+S,OAAEA,EAASpM,KAAK0L,KAAKR,IAAQlS,SAC3BkS,OACD,UACEpQ,MAAM1B,QAAQgT,SACX,IAAI/S,UAAU,kCCvtCvB,SAAqBqC,EAAQgQ,OAC7B,IAAI5R,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCZ,EAAOiE,IAAI7F,EAAGwC,EAAGZ,EAAOe,IAAI3C,EAAGwC,GAAKoP,EAAK5R,IDstCvCuS,CAAYrM,KAAMoM,GACXpM,SAEJ,aACElF,MAAM1B,QAAQgT,SACX,IAAI/S,UAAU,kCCttCvB,SAAwBqC,EAAQgQ,OAChC,IAAI5R,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCZ,EAAOiE,IAAI7F,EAAGwC,EAAGZ,EAAOe,IAAI3C,EAAGwC,GAAKoP,EAAKpP,IDqtCvCgQ,CAAetM,KAAMoM,GACdpM,eAEJ7G,KACmB,iBAAXiT,QACH,IAAI/S,UAAU,kCCrtCvB,SAAmBqC,EAAQgQ,OAC3B,IAAI5R,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCZ,EAAOiE,IAAI7F,EAAGwC,EAAGZ,EAAOe,IAAI3C,EAAGwC,GAAKoP,GDotClCa,CAAUvM,KAAMoM,GACTpM,mBAGD,IAAIpG,MAAO,mBAAkBsR,MAIzCsB,MAAMtB,EAAIlS,EAAU,OACA,iBAAPkS,IACTlS,EAAUkS,EACVA,OAAK/R,GAEgB,iBAAZH,QACH,IAAIK,UAAU,iCAElBmT,EAAQxT,EAAQwT,aACZtB,OACD,cACW/R,IAAVqT,EACFA,ECnuCH,SAAuB9Q,SACtB8Q,EAAQ,OACT,IAAI1S,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,IAAK,KAChCiL,EAAM,MACL,IAAIzI,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCyI,GAAOxK,KAAKC,IAAIkB,EAAOe,IAAI3C,EAAGwC,GAAI,IAAMZ,EAAOO,QAAU,GAE3DuQ,EAAMjQ,KAAKhC,KAAKsK,KAAKE,WAEhByH,ED0tCSC,CAAczM,WACjB,IAAKlF,MAAM1B,QAAQoT,SAClB,IAAInT,UAAU,iCCztCvB,SAAoBqC,EAAQ8Q,OAC5B,IAAI1S,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCZ,EAAOiE,IAAI7F,EAAGwC,EAAGZ,EAAOe,IAAI3C,EAAGwC,GAAKkQ,EAAM1S,IDwtCxC4S,CAAW1M,KAAMwM,GACVxM,SAEJ,iBACW7G,IAAVqT,EACFA,ECxtCH,SAA0B9Q,SACzB8Q,EAAQ,OACT,IAAIlQ,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAAK,KACnCyI,EAAM,MACL,IAAIjL,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,IAC/BiL,GAAOxK,KAAKC,IAAIkB,EAAOe,IAAI3C,EAAGwC,GAAI,IAAMZ,EAAOM,KAAO,GAExDwQ,EAAMjQ,KAAKhC,KAAKsK,KAAKE,WAEhByH,ED+sCSG,CAAiB3M,WACpB,IAAKlF,MAAM1B,QAAQoT,SAClB,IAAInT,UAAU,iCC9sCvB,SAAuBqC,EAAQ8Q,OAC/B,IAAI1S,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCZ,EAAOiE,IAAI7F,EAAGwC,EAAGZ,EAAOe,IAAI3C,EAAGwC,GAAKkQ,EAAMlQ,ID6sCxCsQ,CAAc5M,KAAMwM,GACbxM,eAEJ7G,UACWA,IAAVqT,EACFA,EC7sCH,SAAqB9Q,SACpBmR,EAAUnR,EAAOiQ,KAAO,MAC1B5G,EAAM,MACL,IAAIzI,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,QAC7B,IAAIxC,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,IAC/BiL,GAAOxK,KAAKC,IAAIkB,EAAOe,IAAI3C,EAAGwC,GAAI,GAAKuQ,SAGpCtS,KAAKsK,KAAKE,GDqsCD+H,CAAY9M,WACf,GAAqB,iBAAVwM,QACV,IAAInT,UAAU,iCCpsCvB,SAAkBqC,EAAQ8Q,OAC1B,IAAI1S,EAAI,EAAGA,EAAI4B,EAAOM,KAAMlC,QAC1B,IAAIwC,EAAI,EAAGA,EAAIZ,EAAOO,QAASK,IAClCZ,EAAOiE,IAAI7F,EAAGwC,EAAGZ,EAAOe,IAAI3C,EAAGwC,GAAKkQ,GDmsClCO,CAAS/M,KAAMwM,GACRxM,mBAGD,IAAIpG,MAAO,mBAAkBsR,MAIzC3S,SAASS,UACAyC,EAAyBuE,KAAMhH,IAW1C,SAASuR,EAAetB,EAAGC,UAClBD,EAAIC,EARb/J,EAAe1G,UAAU8H,MAAQ,SACX,oBAAXyM,SACT7N,EAAe1G,UACbuU,OAAOC,IAAI,+BFh6CR,kBACExR,EAAyBuE,QEw6ClCb,EAAeU,OAASV,EAAe+N,KACvC/N,EAAegO,UAAYhO,EAAeiO,QAC1CjO,EAAekO,SAAWlO,EAAeuF,KACzCvF,EAAe1G,UAAU4U,SAAWlO,EAAe1G,UAAUiM,KAC7DvF,EAAemO,SAAWnO,EAAeoO,IACzCpO,EAAe1G,UAAU+U,OAASrO,EAAe1G,UAAU2J,IAC3DjD,EAAe1G,UAAUgV,cACvBtO,EAAe1G,UAAUyR,iBAEZ,MAAM1K,UAAeL,EAClCrD,YAAY4R,EAAOC,cAEbnO,EAAOc,SAASoN,UAEXA,EAAMlM,QACR,GAAI9H,OAAOC,UAAU+T,IAAUA,GAAS,EAAG,SAE3C1T,KAAO,KACRN,OAAOC,UAAUgU,IAAaA,GAAY,SAKtC,IAAItU,UAAU,2CAJf,IAAIS,EAAI,EAAGA,EAAI4T,EAAO5T,SACpBE,KAAKuC,KAAK,IAAI+I,aAAaqI,QAK/B,CAAA,IAAI7S,MAAM1B,QAAQsU,SAkBjB,IAAIrU,UACR,wDAnB6B,OAEzBuU,EAAYF,KAGM,iBADxBC,GADAD,EAAQE,EAAU1U,QACC0U,EAAU,GAAG1U,OAAS,SAEjC,IAAIG,UACR,0DAGCW,KAAO,OACP,IAAIF,EAAI,EAAGA,EAAI4T,EAAO5T,IAAK,IAC1B8T,EAAU9T,GAAGZ,SAAWyU,QACpB,IAAI1S,WAAW,sCAElBjB,KAAKuC,KAAK+I,aAAalH,KAAKwP,EAAU9T,YAO1CkC,KAAO0R,OACPzR,QAAU0R,EAGjBhO,IAAIoL,EAAUC,EAAajM,eACpB/E,KAAK+Q,GAAUC,GAAejM,EAC5BiB,KAGTvD,IAAIsO,EAAUC,UACLhL,KAAKhG,KAAK+Q,GAAUC,GAG7B6C,UAAUpQ,UACRD,EAAcwC,KAAMvC,QACfzD,KAAK8T,OAAOrQ,EAAO,QACnBzB,MAAQ,EACNgE,KAGT+N,OAAOtQ,EAAOuB,eACE7F,IAAV6F,IACFA,EAAQvB,EACRA,EAAQuC,KAAKhE,MAEfwB,EAAcwC,KAAMvC,GAAO,GAC3BuB,EAAQsG,aAAalH,KAAKR,EAAeoC,KAAMhB,SAC1ChF,KAAK8T,OAAOrQ,EAAO,EAAGuB,QACtBhD,MAAQ,EACNgE,KAGTgO,aAAavQ,GACXE,EAAiBqC,KAAMvC,OAClB,IAAI3D,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAAK,OAC5BmU,EAAS,IAAI3I,aAAatF,KAAK/D,QAAU,OAC1C,IAAIK,EAAI,EAAGA,EAAImB,EAAOnB,IACzB2R,EAAO3R,GAAK0D,KAAKhG,KAAKF,GAAGwC,OAEtB,IAAIA,EAAImB,EAAQ,EAAGnB,EAAI0D,KAAK/D,QAASK,IACxC2R,EAAO3R,EAAI,GAAK0D,KAAKhG,KAAKF,GAAGwC,QAE1BtC,KAAKF,GAAKmU,cAEZhS,SAAW,EACT+D,KAGTkO,UAAUzQ,EAAOuB,QACM,IAAVA,IACTA,EAAQvB,EACRA,EAAQuC,KAAK/D,SAEf0B,EAAiBqC,KAAMvC,GAAO,GAC9BuB,EAAQjB,EAAkBiC,KAAMhB,OAC3B,IAAIlF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,IAAK,OAC5BmU,EAAS,IAAI3I,aAAatF,KAAK/D,QAAU,OAC3CK,EAAI,OACDA,EAAImB,EAAOnB,IAChB2R,EAAO3R,GAAK0D,KAAKhG,KAAKF,GAAGwC,OAE3B2R,EAAO3R,KAAO0C,EAAMlF,GACbwC,EAAI0D,KAAK/D,QAAU,EAAGK,IAC3B2R,EAAO3R,GAAK0D,KAAKhG,KAAKF,GAAGwC,EAAI,QAE1BtC,KAAKF,GAAKmU,cAEZhS,SAAW,EACT+D,OE/hDJ,SAA+Bb,EAAgBK,GACpDL,EAAe1G,UAAU8Q,IAAM,SAAaxK,SACrB,iBAAVA,EAA2BiB,KAAKmO,KAAKpP,GACzCiB,KAAKoO,KAAKrP,IAGnBI,EAAe1G,UAAU0V,KAAO,SAAcpP,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAU2V,KAAO,SAAc1S,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAeoK,IAAM,SAAa7N,EAAQqD,UACtB,IAAIS,EAAO9D,GACZ6N,IAAIxK,IAGvBI,EAAe1G,UAAU+Q,IAAM,SAAazK,SACrB,iBAAVA,EAA2BiB,KAAKqO,KAAKtP,GACzCiB,KAAKsO,KAAKvP,IAGnBI,EAAe1G,UAAU4V,KAAO,SAActP,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAU6V,KAAO,SAAc5S,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAeqK,IAAM,SAAa9N,EAAQqD,UACtB,IAAIS,EAAO9D,GACZ8N,IAAIzK,IAEvBI,EAAe1G,UAAU8V,SAAWpP,EAAe1G,UAAU+Q,IAC7DrK,EAAe1G,UAAU+V,UAAYrP,EAAe1G,UAAU4V,KAC9DlP,EAAe1G,UAAUgW,UAAYtP,EAAe1G,UAAU6V,KAC9DnP,EAAeoP,SAAWpP,EAAeqK,IAEzCrK,EAAe1G,UAAUiW,IAAM,SAAa3P,SACrB,iBAAVA,EAA2BiB,KAAKqC,KAAKtD,GACzCiB,KAAK2O,KAAK5P,IAGnBI,EAAe1G,UAAU4J,KAAO,SAActD,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAUkW,KAAO,SAAcjT,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAeuP,IAAM,SAAahT,EAAQqD,UACtB,IAAIS,EAAO9D,GACZgT,IAAI3P,IAEvBI,EAAe1G,UAAUmW,SAAWzP,EAAe1G,UAAUiW,IAC7DvP,EAAe1G,UAAUoW,UAAY1P,EAAe1G,UAAU4J,KAC9DlD,EAAe1G,UAAUqW,UAAY3P,EAAe1G,UAAUkW,KAC9DxP,EAAeyP,SAAWzP,EAAeuP,IAEzCvP,EAAe1G,UAAUsW,IAAM,SAAahQ,SACrB,iBAAVA,EAA2BiB,KAAKgP,KAAKjQ,GACzCiB,KAAKiP,KAAKlQ,IAGnBI,EAAe1G,UAAUuW,KAAO,SAAcjQ,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAUwW,KAAO,SAAcvT,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAe4P,IAAM,SAAarT,EAAQqD,UACtB,IAAIS,EAAO9D,GACZqT,IAAIhQ,IAEvBI,EAAe1G,UAAUyW,OAAS/P,EAAe1G,UAAUsW,IAC3D5P,EAAe1G,UAAU0W,QAAUhQ,EAAe1G,UAAUuW,KAC5D7P,EAAe1G,UAAU2W,QAAUjQ,EAAe1G,UAAUwW,KAC5D9P,EAAe+P,OAAS/P,EAAe4P,IAEvC5P,EAAe1G,UAAU4W,IAAM,SAAatQ,SACrB,iBAAVA,EAA2BiB,KAAKsP,KAAKvQ,GACzCiB,KAAKuP,KAAKxQ,IAGnBI,EAAe1G,UAAU6W,KAAO,SAAcvQ,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAU8W,KAAO,SAAc7T,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAekQ,IAAM,SAAa3T,EAAQqD,UACtB,IAAIS,EAAO9D,GACZ2T,IAAItQ,IAEvBI,EAAe1G,UAAU+W,QAAUrQ,EAAe1G,UAAU4W,IAC5DlQ,EAAe1G,UAAUgX,SAAWtQ,EAAe1G,UAAU6W,KAC7DnQ,EAAe1G,UAAUiX,SAAWvQ,EAAe1G,UAAU8W,KAC7DpQ,EAAeqQ,QAAUrQ,EAAekQ,IAExClQ,EAAe1G,UAAUkX,IAAM,SAAa5Q,SACrB,iBAAVA,EAA2BiB,KAAK4P,KAAK7Q,GACzCiB,KAAK6P,KAAK9Q,IAGnBI,EAAe1G,UAAUmX,KAAO,SAAc7Q,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAUoX,KAAO,SAAcnU,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAewQ,IAAM,SAAajU,EAAQqD,UACtB,IAAIS,EAAO9D,GACZiU,IAAI5Q,IAGvBI,EAAe1G,UAAUqX,GAAK,SAAY/Q,SACnB,iBAAVA,EAA2BiB,KAAK+P,IAAIhR,GACxCiB,KAAKgQ,IAAIjR,IAGlBI,EAAe1G,UAAUsX,IAAM,SAAahR,OACrC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAUuX,IAAM,SAAatU,MAC1CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAe2Q,GAAK,SAAYpU,EAAQqD,UACpB,IAAIS,EAAO9D,GACZoU,GAAG/Q,IAGtBI,EAAe1G,UAAUwX,IAAM,SAAalR,SACrB,iBAAVA,EAA2BiB,KAAKkQ,KAAKnR,GACzCiB,KAAKmQ,KAAKpR,IAGnBI,EAAe1G,UAAUyX,KAAO,SAAcnR,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKyC,UAG7BiB,MAGTb,EAAe1G,UAAU0X,KAAO,SAAczU,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,GAAKZ,EAAOe,IAAI3C,EAAGwC,WAG3C0D,MAGTb,EAAe8Q,IAAM,SAAavU,EAAQqD,UACtB,IAAIS,EAAO9D,GACZuU,IAAIlR,IAGvBI,EAAe1G,UAAU2X,UAAY,SAAmBrR,SACjC,iBAAVA,EAA2BiB,KAAKqQ,WAAWtR,GAC/CiB,KAAKsQ,WAAWvR,IAGzBI,EAAe1G,UAAU4X,WAAa,SAAoBtR,OACnD,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,IAAMyC,UAG9BiB,MAGTb,EAAe1G,UAAU6X,WAAa,SAAoB5U,MACxDA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,IAAMZ,EAAOe,IAAI3C,EAAGwC,WAG5C0D,MAGTb,EAAeiR,UAAY,SAAmB1U,EAAQqD,UAClC,IAAIS,EAAO9D,GACZ0U,UAAUrR,IAG7BI,EAAe1G,UAAU8X,0BAA4B,SAAmCxR,SACjE,iBAAVA,EAA2BiB,KAAKwQ,2BAA2BzR,GAC/DiB,KAAKyQ,2BAA2B1R,IAGzCI,EAAe1G,UAAU+X,2BAA6B,SAAoCzR,OACnF,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,IAAMyC,UAG9BiB,MAGTb,EAAe1G,UAAUgY,2BAA6B,SAAoC/U,MACxFA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,IAAMZ,EAAOe,IAAI3C,EAAGwC,WAG5C0D,MAGTb,EAAeoR,0BAA4B,SAAmC7U,EAAQqD,UAClE,IAAIS,EAAO9D,GACZ6U,0BAA0BxR,IAG7CI,EAAe1G,UAAUiY,WAAa,SAAoB3R,SACnC,iBAAVA,EAA2BiB,KAAK2Q,YAAY5R,GAChDiB,KAAK4Q,YAAY7R,IAG1BI,EAAe1G,UAAUkY,YAAc,SAAqB5R,OACrD,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,KAAOyC,UAG/BiB,MAGTb,EAAe1G,UAAUmY,YAAc,SAAqBlV,MAC1DA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG0D,KAAKvD,IAAI3C,EAAGwC,KAAOZ,EAAOe,IAAI3C,EAAGwC,WAG7C0D,MAGTb,EAAeuR,WAAa,SAAoBhV,EAAQqD,UACpC,IAAIS,EAAO9D,GACZgV,WAAW3R,IAE9BI,EAAe1G,UAAUoY,mBAAqB1R,EAAe1G,UAAUiY,WACvEvR,EAAe1G,UAAUqY,oBAAsB3R,EAAe1G,UAAUkY,YACxExR,EAAe1G,UAAUsY,oBAAsB5R,EAAe1G,UAAUmY,YACxEzR,EAAe0R,mBAAqB1R,EAAeuR,WAEnDvR,EAAe1G,UAAUuY,IAAM,eACxB,IAAIlX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,GAAK0D,KAAKvD,IAAI3C,EAAGwC,WAG1B0D,MAGTb,EAAe6R,IAAM,SAAatV,UACd,IAAI8D,EAAO9D,GACZsV,OAGnB7R,EAAe1G,UAAUwY,IAAM,eACxB,IAAInX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK0W,IAAIjR,KAAKvD,IAAI3C,EAAGwC,YAGjC0D,MAGTb,EAAe8R,IAAM,SAAavV,UACd,IAAI8D,EAAO9D,GACZuV,OAGnB9R,EAAe1G,UAAUyY,KAAO,eACzB,IAAIpX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK2W,KAAKlR,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAe+R,KAAO,SAAcxV,UAChB,IAAI8D,EAAO9D,GACZwV,QAGnB/R,EAAe1G,UAAU0Y,MAAQ,eAC1B,IAAIrX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK4W,MAAMnR,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAegS,MAAQ,SAAezV,UAClB,IAAI8D,EAAO9D,GACZyV,SAGnBhS,EAAe1G,UAAU2Y,KAAO,eACzB,IAAItX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK6W,KAAKpR,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAeiS,KAAO,SAAc1V,UAChB,IAAI8D,EAAO9D,GACZ0V,QAGnBjS,EAAe1G,UAAU4Y,MAAQ,eAC1B,IAAIvX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK8W,MAAMrR,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAekS,MAAQ,SAAe3V,UAClB,IAAI8D,EAAO9D,GACZ2V,SAGnBlS,EAAe1G,UAAU6Y,KAAO,eACzB,IAAIxX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK+W,KAAKtR,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAemS,KAAO,SAAc5V,UAChB,IAAI8D,EAAO9D,GACZ4V,QAGnBnS,EAAe1G,UAAU8Y,MAAQ,eAC1B,IAAIzX,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKgX,MAAMvR,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAeoS,MAAQ,SAAe7V,UAClB,IAAI8D,EAAO9D,GACZ6V,SAGnBpS,EAAe1G,UAAU+Y,KAAO,eACzB,IAAI1X,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKiX,KAAKxR,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAeqS,KAAO,SAAc9V,UAChB,IAAI8D,EAAO9D,GACZ8V,QAGnBrS,EAAe1G,UAAUqR,KAAO,eACzB,IAAIhQ,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKuP,KAAK9J,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAe2K,KAAO,SAAcpO,UAChB,IAAI8D,EAAO9D,GACZoO,QAGnB3K,EAAe1G,UAAUgZ,MAAQ,eAC1B,IAAI3X,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKkX,MAAMzR,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAesS,MAAQ,SAAe/V,UAClB,IAAI8D,EAAO9D,GACZ+V,SAGnBtS,EAAe1G,UAAUiZ,IAAM,eACxB,IAAI5X,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKmX,IAAI1R,KAAKvD,IAAI3C,EAAGwC,YAGjC0D,MAGTb,EAAeuS,IAAM,SAAahW,UACd,IAAI8D,EAAO9D,GACZgW,OAGnBvS,EAAe1G,UAAUkZ,KAAO,eACzB,IAAI7X,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKoX,KAAK3R,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAewS,KAAO,SAAcjW,UAChB,IAAI8D,EAAO9D,GACZiW,QAGnBxS,EAAe1G,UAAUmZ,IAAM,eACxB,IAAI9X,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKqX,IAAI5R,KAAKvD,IAAI3C,EAAGwC,YAGjC0D,MAGTb,EAAeyS,IAAM,SAAalW,UACd,IAAI8D,EAAO9D,GACZkW,OAGnBzS,EAAe1G,UAAUoZ,MAAQ,eAC1B,IAAI/X,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKsX,MAAM7R,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAe0S,MAAQ,SAAenW,UAClB,IAAI8D,EAAO9D,GACZmW,SAGnB1S,EAAe1G,UAAUqZ,MAAQ,eAC1B,IAAIhY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKuX,MAAM9R,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAe2S,MAAQ,SAAepW,UAClB,IAAI8D,EAAO9D,GACZoW,SAGnB3S,EAAe1G,UAAUsZ,OAAS,eAC3B,IAAIjY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKwX,OAAO/R,KAAKvD,IAAI3C,EAAGwC,YAGpC0D,MAGTb,EAAe4S,OAAS,SAAgBrW,UACpB,IAAI8D,EAAO9D,GACZqW,UAGnB5S,EAAe1G,UAAUuZ,IAAM,eACxB,IAAIlY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKyX,IAAIhS,KAAKvD,IAAI3C,EAAGwC,YAGjC0D,MAGTb,EAAe6S,IAAM,SAAatW,UACd,IAAI8D,EAAO9D,GACZsW,OAGnB7S,EAAe1G,UAAUwZ,MAAQ,eAC1B,IAAInY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK0X,MAAMjS,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAe8S,MAAQ,SAAevW,UAClB,IAAI8D,EAAO9D,GACZuW,SAGnB9S,EAAe1G,UAAUyZ,MAAQ,eAC1B,IAAIpY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK2X,MAAMlS,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAe+S,MAAQ,SAAexW,UAClB,IAAI8D,EAAO9D,GACZwW,SAGnB/S,EAAe1G,UAAU0Z,KAAO,eACzB,IAAIrY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK4X,KAAKnS,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAegT,KAAO,SAAczW,UAChB,IAAI8D,EAAO9D,GACZyW,QAGnBhT,EAAe1G,UAAUsH,MAAQ,eAC1B,IAAIjG,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKwF,MAAMC,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAeY,MAAQ,SAAerE,UAClB,IAAI8D,EAAO9D,GACZqE,SAGnBZ,EAAe1G,UAAU2Z,KAAO,eACzB,IAAItY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK6X,KAAKpS,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAeiT,KAAO,SAAc1W,UAChB,IAAI8D,EAAO9D,GACZ0W,QAGnBjT,EAAe1G,UAAU4Z,IAAM,eACxB,IAAIvY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK8X,IAAIrS,KAAKvD,IAAI3C,EAAGwC,YAGjC0D,MAGTb,EAAekT,IAAM,SAAa3W,UACd,IAAI8D,EAAO9D,GACZ2W,OAGnBlT,EAAe1G,UAAU6Z,KAAO,eACzB,IAAIxY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAK+X,KAAKtS,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAemT,KAAO,SAAc5W,UAChB,IAAI8D,EAAO9D,GACZ4W,QAGnBnT,EAAe1G,UAAUoM,KAAO,eACzB,IAAI/K,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKsK,KAAK7E,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAe0F,KAAO,SAAcnJ,UAChB,IAAI8D,EAAO9D,GACZmJ,QAGnB1F,EAAe1G,UAAU8Z,IAAM,eACxB,IAAIzY,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKgY,IAAIvS,KAAKvD,IAAI3C,EAAGwC,YAGjC0D,MAGTb,EAAeoT,IAAM,SAAa7W,UACd,IAAI8D,EAAO9D,GACZ6W,OAGnBpT,EAAe1G,UAAU+Z,KAAO,eACzB,IAAI1Y,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKiY,KAAKxS,KAAKvD,IAAI3C,EAAGwC,YAGlC0D,MAGTb,EAAeqT,KAAO,SAAc9W,UAChB,IAAI8D,EAAO9D,GACZ8W,QAGnBrT,EAAe1G,UAAUga,MAAQ,eAC1B,IAAI3Y,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKkY,MAAMzS,KAAKvD,IAAI3C,EAAGwC,YAGnC0D,MAGTb,EAAesT,MAAQ,SAAe/W,UAClB,IAAI8D,EAAO9D,GACZ+W,SAGnBtT,EAAe3E,IAAM,SAAakB,EAAQgX,UACtB,IAAIlT,EAAO9D,GACZlB,IAAIkY,IAGvBvT,EAAe1G,UAAU+B,IAAM,SAAauE,SACrB,iBAAVA,EAA2BiB,KAAK2S,KAAK5T,GACzCiB,KAAK4S,KAAK7T,IAGnBI,EAAe1G,UAAUka,KAAO,SAAc5T,OACvC,IAAIjF,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKC,IAAIwF,KAAKvD,IAAI3C,EAAGwC,GAAIyC,WAGrCiB,MAGTb,EAAe1G,UAAUma,KAAO,SAAclX,MAC5CA,EAAS8D,EAAOa,YAAY3E,GACxBsE,KAAKhE,OAASN,EAAOM,MACvBgE,KAAK/D,UAAYP,EAAOO,cAClB,IAAIhB,WAAW,yCAElB,IAAInB,EAAI,EAAGA,EAAIkG,KAAKhE,KAAMlC,QACxB,IAAIwC,EAAI,EAAGA,EAAI0D,KAAK/D,QAASK,SAC3BqD,IAAI7F,EAAGwC,EAAG/B,KAAKC,IAAIwF,KAAKvD,IAAI3C,EAAGwC,GAAIZ,EAAOe,IAAI3C,EAAGwC,YAGnD0D,MF+uBX6S,CAAsB1T,EAAgBK,GGjiDvB,MAAMsT,UAAwB3T,EAC3CrD,YAAY9B,gBAELA,KAAOA,OACPgC,KAAOhC,EAAKd,YACZ+C,QAAUjC,EAAK,GAAGd,OAGzByG,IAAIoL,EAAUC,EAAajM,eACpB/E,KAAK+Q,GAAUC,GAAejM,EAC5BiB,KAGTvD,IAAIsO,EAAUC,UACLhL,KAAKhG,KAAK+Q,GAAUC,ICbhB,MAAM+H,EACnBjX,YAAYJ,OAQN5B,EAAGwC,EAAGgF,EAAGW,EAAGsD,EAAGyN,EAAGjP,EAClBkP,EAAQC,EANRC,GAFJzX,EAASoX,EAAgBzS,YAAY3E,IAErB8F,QACZxF,EAAOmX,EAAGnX,KACVC,EAAUkX,EAAGlX,QACbmX,EAAc,IAAI9N,aAAatJ,GAC/BqX,EAAY,MAIXvZ,EAAI,EAAGA,EAAIkC,EAAMlC,IACpBsZ,EAAYtZ,GAAKA,MAGnBmZ,EAAS,IAAI3N,aAAatJ,GAErBM,EAAI,EAAGA,EAAIL,EAASK,IAAK,KACvBxC,EAAI,EAAGA,EAAIkC,EAAMlC,IACpBmZ,EAAOnZ,GAAKqZ,EAAG1W,IAAI3C,EAAGwC,OAGnBxC,EAAI,EAAGA,EAAIkC,EAAMlC,IAAK,KACzBoZ,EAAO3Y,KAAKG,IAAIZ,EAAGwC,GACnBiJ,EAAI,EACCjE,EAAI,EAAGA,EAAI4R,EAAM5R,IACpBiE,GAAK4N,EAAG1W,IAAI3C,EAAGwH,GAAK2R,EAAO3R,GAE7B2R,EAAOnZ,IAAMyL,EACb4N,EAAGxT,IAAI7F,EAAGwC,EAAG2W,EAAOnZ,QAGtBmI,EAAI3F,EACCxC,EAAIwC,EAAI,EAAGxC,EAAIkC,EAAMlC,IACpBS,KAAK0W,IAAIgC,EAAOnZ,IAAMS,KAAK0W,IAAIgC,EAAOhR,MACxCA,EAAInI,MAIJmI,IAAM3F,EAAG,KACNgF,EAAI,EAAGA,EAAIrF,EAASqF,IACvB0R,EAAIG,EAAG1W,IAAIwF,EAAGX,GACd6R,EAAGxT,IAAIsC,EAAGX,EAAG6R,EAAG1W,IAAIH,EAAGgF,IACvB6R,EAAGxT,IAAIrD,EAAGgF,EAAG0R,GAGfjP,EAAIqP,EAAYnR,GAChBmR,EAAYnR,GAAKmR,EAAY9W,GAC7B8W,EAAY9W,GAAKyH,EAEjBsP,GAAaA,KAGX/W,EAAIN,GAAyB,IAAjBmX,EAAG1W,IAAIH,EAAGA,OACnBxC,EAAIwC,EAAI,EAAGxC,EAAIkC,EAAMlC,IACxBqZ,EAAGxT,IAAI7F,EAAGwC,EAAG6W,EAAG1W,IAAI3C,EAAGwC,GAAK6W,EAAG1W,IAAIH,EAAGA,SAKvCgX,GAAKH,OACLC,YAAcA,OACdC,UAAYA,EAGnBE,iBACMvZ,EAAOgG,KAAKsT,GACZE,EAAMxZ,EAAKiC,YACV,IAAIK,EAAI,EAAGA,EAAIkX,EAAKlX,OACA,IAAnBtC,EAAKyC,IAAIH,EAAGA,UACP,SAGJ,EAGTmX,MAAM1U,GACJA,EAAQS,EAAOa,YAAYtB,OAEvBoU,EAAKnT,KAAKsT,MACHH,EAAGnX,OAED+C,EAAM/C,WACX,IAAIpC,MAAM,gCAEdoG,KAAKuT,mBACD,IAAI3Z,MAAM,6BAMdE,EAAGwC,EAAGgF,EAHNoS,EAAQ3U,EAAM9C,QACd0X,EAAI5U,EAAM2L,aAAa1K,KAAKoT,YAAa,EAAGM,EAAQ,GACpDzX,EAAUkX,EAAGlX,YAGZqF,EAAI,EAAGA,EAAIrF,EAASqF,QAClBxH,EAAIwH,EAAI,EAAGxH,EAAImC,EAASnC,QACtBwC,EAAI,EAAGA,EAAIoX,EAAOpX,IACrBqX,EAAEhU,IAAI7F,EAAGwC,EAAGqX,EAAElX,IAAI3C,EAAGwC,GAAKqX,EAAElX,IAAI6E,EAAGhF,GAAK6W,EAAG1W,IAAI3C,EAAGwH,QAInDA,EAAIrF,EAAU,EAAGqF,GAAK,EAAGA,IAAK,KAC5BhF,EAAI,EAAGA,EAAIoX,EAAOpX,IACrBqX,EAAEhU,IAAI2B,EAAGhF,EAAGqX,EAAElX,IAAI6E,EAAGhF,GAAK6W,EAAG1W,IAAI6E,EAAGA,QAEjCxH,EAAI,EAAGA,EAAIwH,EAAGxH,QACZwC,EAAI,EAAGA,EAAIoX,EAAOpX,IACrBqX,EAAEhU,IAAI7F,EAAGwC,EAAGqX,EAAElX,IAAI3C,EAAGwC,GAAKqX,EAAElX,IAAI6E,EAAGhF,GAAK6W,EAAG1W,IAAI3C,EAAGwH,WAIjDqS,wBAIH3Z,EAAOgG,KAAKsT,OACXtZ,EAAKgH,iBACF,IAAIpH,MAAM,6BAEdga,EAAc5T,KAAKqT,UACnBG,EAAMxZ,EAAKiC,YACV,IAAIK,EAAI,EAAGA,EAAIkX,EAAKlX,IACvBsX,GAAe5Z,EAAKyC,IAAIH,EAAGA,UAEtBsX,kCAIH5Z,EAAOgG,KAAKsT,GACZtX,EAAOhC,EAAKgC,KACZC,EAAUjC,EAAKiC,QACf0X,EAAI,IAAInU,EAAOxD,EAAMC,OACpB,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IACvBxC,EAAIwC,EACNqX,EAAEhU,IAAI7F,EAAGwC,EAAGtC,EAAKyC,IAAI3C,EAAGwC,IACfxC,IAAMwC,EACfqX,EAAEhU,IAAI7F,EAAGwC,EAAG,GAEZqX,EAAEhU,IAAI7F,EAAGwC,EAAG,UAIXqX,kCAIH3Z,EAAOgG,KAAKsT,GACZtX,EAAOhC,EAAKgC,KACZC,EAAUjC,EAAKiC,QACf0X,EAAI,IAAInU,EAAOxD,EAAMC,OACpB,IAAInC,EAAI,EAAGA,EAAIkC,EAAMlC,QACnB,IAAIwC,EAAI,EAAGA,EAAIL,EAASK,IACvBxC,GAAKwC,EACPqX,EAAEhU,IAAI7F,EAAGwC,EAAGtC,EAAKyC,IAAI3C,EAAGwC,IAExBqX,EAAEhU,IAAI7F,EAAGwC,EAAG,UAIXqX,sCAIA7Y,MAAMsD,KAAK4B,KAAKoT,cCxKpB,SAASS,EAAW5K,EAAGC,OACxB/K,EAAI,SACJ5D,KAAK0W,IAAIhI,GAAK1O,KAAK0W,IAAI/H,IACzB/K,EAAI+K,EAAID,EACD1O,KAAK0W,IAAIhI,GAAK1O,KAAKsK,KAAK,EAAI1G,EAAIA,IAE/B,IAAN+K,GACF/K,EAAI8K,EAAIC,EACD3O,KAAK0W,IAAI/H,GAAK3O,KAAKsK,KAAK,EAAI1G,EAAIA,IAElC,ECLM,MAAM2V,EACnBhY,YAAYiD,OAONjF,EAAGwC,EAAGgF,EAAGiE,EAJTwO,GAFJhV,EAAQ+T,EAAgBzS,YAAYtB,IAErByC,QACXM,EAAI/C,EAAM/C,KACV+F,EAAIhD,EAAM9C,QACV+X,EAAQ,IAAI1O,aAAavD,OAGxBT,EAAI,EAAGA,EAAIS,EAAGT,IAAK,KAClB2S,EAAM,MACLna,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACjBma,EAAMJ,EAAWI,EAAKF,EAAGtX,IAAI3C,EAAGwH,OAEtB,IAAR2S,EAAW,KACTF,EAAGtX,IAAI6E,EAAGA,GAAK,IACjB2S,GAAOA,GAEJna,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACjBia,EAAGpU,IAAI7F,EAAGwH,EAAGyS,EAAGtX,IAAI3C,EAAGwH,GAAK2S,OAE9BF,EAAGpU,IAAI2B,EAAGA,EAAGyS,EAAGtX,IAAI6E,EAAGA,GAAK,GACvBhF,EAAIgF,EAAI,EAAGhF,EAAIyF,EAAGzF,IAAK,KAC1BiJ,EAAI,EACCzL,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACjByL,GAAKwO,EAAGtX,IAAI3C,EAAGwH,GAAKyS,EAAGtX,IAAI3C,EAAGwC,OAEhCiJ,GAAKA,EAAIwO,EAAGtX,IAAI6E,EAAGA,GACdxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACjBia,EAAGpU,IAAI7F,EAAGwC,EAAGyX,EAAGtX,IAAI3C,EAAGwC,GAAKiJ,EAAIwO,EAAGtX,IAAI3C,EAAGwH,KAIhD0S,EAAM1S,IAAM2S,OAGTC,GAAKH,OACLI,MAAQH,EAGfP,MAAM1U,GACJA,EAAQS,EAAOa,YAAYtB,OAEvBgV,EAAK/T,KAAKkU,GACVpS,EAAIiS,EAAG/X,QAEP+C,EAAM/C,OAAS8F,QACX,IAAIlI,MAAM,wCAEboG,KAAKoU,mBACF,IAAIxa,MAAM,gCAMdE,EAAGwC,EAAGgF,EAAGiE,EAHTmO,EAAQ3U,EAAM9C,QACd0X,EAAI5U,EAAMyC,QACVO,EAAIgS,EAAG9X,YAGNqF,EAAI,EAAGA,EAAIS,EAAGT,QACZhF,EAAI,EAAGA,EAAIoX,EAAOpX,IAAK,KAC1BiJ,EAAI,EACCzL,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACjByL,GAAKwO,EAAGtX,IAAI3C,EAAGwH,GAAKqS,EAAElX,IAAI3C,EAAGwC,OAE/BiJ,GAAKA,EAAIwO,EAAGtX,IAAI6E,EAAGA,GACdxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACjB6Z,EAAEhU,IAAI7F,EAAGwC,EAAGqX,EAAElX,IAAI3C,EAAGwC,GAAKiJ,EAAIwO,EAAGtX,IAAI3C,EAAGwH,QAIzCA,EAAIS,EAAI,EAAGT,GAAK,EAAGA,IAAK,KACtBhF,EAAI,EAAGA,EAAIoX,EAAOpX,IACrBqX,EAAEhU,IAAI2B,EAAGhF,EAAGqX,EAAElX,IAAI6E,EAAGhF,GAAK0D,KAAKmU,MAAM7S,QAElCxH,EAAI,EAAGA,EAAIwH,EAAGxH,QACZwC,EAAI,EAAGA,EAAIoX,EAAOpX,IACrBqX,EAAEhU,IAAI7F,EAAGwC,EAAGqX,EAAElX,IAAI3C,EAAGwC,GAAKqX,EAAElX,IAAI6E,EAAGhF,GAAKyX,EAAGtX,IAAI3C,EAAGwH,WAKjDqS,EAAErK,UAAU,EAAGvH,EAAI,EAAG,EAAG2R,EAAQ,GAG1CU,iBACMnY,EAAU+D,KAAKkU,GAAGjY,YACjB,IAAInC,EAAI,EAAGA,EAAImC,EAASnC,OACL,IAAlBkG,KAAKmU,MAAMra,UACN,SAGJ,kCAOHA,EAAGwC,EAHHyX,EAAK/T,KAAKkU,GACVnS,EAAIgS,EAAG9X,QACP0X,EAAI,IAAInU,EAAOuC,EAAGA,OAEjBjI,EAAI,EAAGA,EAAIiI,EAAGjI,QACZwC,EAAI,EAAGA,EAAIyF,EAAGzF,IACbxC,EAAIwC,EACNqX,EAAEhU,IAAI7F,EAAGwC,EAAGyX,EAAGtX,IAAI3C,EAAGwC,IACbxC,IAAMwC,EACfqX,EAAEhU,IAAI7F,EAAGwC,EAAG0D,KAAKmU,MAAMra,IAEvB6Z,EAAEhU,IAAI7F,EAAGwC,EAAG,UAIXqX,6BAQH7Z,EAAGwC,EAAGgF,EAAGiE,EAJTwO,EAAK/T,KAAKkU,GACVlY,EAAO+X,EAAG/X,KACVC,EAAU8X,EAAG9X,QACb0X,EAAI,IAAInU,EAAOxD,EAAMC,OAGpBqF,EAAIrF,EAAU,EAAGqF,GAAK,EAAGA,IAAK,KAC5BxH,EAAI,EAAGA,EAAIkC,EAAMlC,IACpB6Z,EAAEhU,IAAI7F,EAAGwH,EAAG,OAEdqS,EAAEhU,IAAI2B,EAAGA,EAAG,GACPhF,EAAIgF,EAAGhF,EAAIL,EAASK,OACF,IAAjByX,EAAGtX,IAAI6E,EAAGA,GAAU,KACtBiE,EAAI,EACCzL,EAAIwH,EAAGxH,EAAIkC,EAAMlC,IACpByL,GAAKwO,EAAGtX,IAAI3C,EAAGwH,GAAKqS,EAAElX,IAAI3C,EAAGwC,OAG/BiJ,GAAKA,EAAIwO,EAAGtX,IAAI6E,EAAGA,GAEdxH,EAAIwH,EAAGxH,EAAIkC,EAAMlC,IACpB6Z,EAAEhU,IAAI7F,EAAGwC,EAAGqX,EAAElX,IAAI3C,EAAGwC,GAAKiJ,EAAIwO,EAAGtX,IAAI3C,EAAGwH,YAKzCqS,GC7II,MAAMU,EACnBvY,YAAYiD,EAAO/F,EAAU,QAC3B+F,EAAQ+T,EAAgBzS,YAAYtB,IAE1BG,gBACF,IAAItF,MAAM,gCAGdkI,EAAI/C,EAAM/C,KACV+F,EAAIhD,EAAM9C,cAERqY,2BACJA,GAA6B,EADzBC,4BAEJA,GAA8B,EAF1BC,cAGJA,GAAgB,GACdxb,MAMAiQ,EAJAwL,EAAQC,QAAQJ,GAChBK,EAAQD,QAAQH,GAEhBK,GAAU,KAEV9S,EAAIC,KACDyS,EAME,CACLvL,EAAIlK,EAAMqL,YACVtI,EAAImH,EAAEjN,KACN+F,EAAIkH,EAAEhN,QACN2Y,GAAU,MACNC,EAAMJ,EACVA,EAAQE,EACRA,EAAQE,OAZR5L,EAAIlK,EAAMyC,QAEVsH,QAAQC,KACN,+FAYJE,EAAIlK,EAAMyC,YAGRsT,EAAKva,KAAKG,IAAIoH,EAAGC,GACjBgT,EAAKxa,KAAKG,IAAIoH,EAAI,EAAGC,GACrBwD,EAAI,IAAID,aAAayP,GACrBC,EAAI,IAAIxV,EAAOsC,EAAGgT,GAClBG,EAAI,IAAIzV,EAAOuC,EAAGA,GAElBzE,EAAI,IAAIgI,aAAavD,GACrBmT,EAAO,IAAI5P,aAAaxD,GAExBqT,EAAK,IAAI7P,aAAayP,OACrB,IAAIjb,EAAI,EAAGA,EAAIib,EAAIjb,IAAKqb,EAAGrb,GAAKA,MAEjCsb,EAAM7a,KAAKG,IAAIoH,EAAI,EAAGC,GACtBsT,EAAM9a,KAAKzB,IAAI,EAAGyB,KAAKG,IAAIqH,EAAI,EAAGD,IAClCwT,EAAM/a,KAAKzB,IAAIsc,EAAKC,OAEnB,IAAI/T,EAAI,EAAGA,EAAIgU,EAAKhU,IAAK,IACxBA,EAAI8T,EAAK,CACX7P,EAAEjE,GAAK,MACF,IAAIxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrByL,EAAEjE,GAAKuS,EAAWtO,EAAEjE,GAAI2H,EAAExM,IAAI3C,EAAGwH,OAEtB,IAATiE,EAAEjE,GAAU,CACV2H,EAAExM,IAAI6E,EAAGA,GAAK,IAChBiE,EAAEjE,IAAMiE,EAAEjE,QAEP,IAAIxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBmP,EAAEtJ,IAAI7F,EAAGwH,EAAG2H,EAAExM,IAAI3C,EAAGwH,GAAKiE,EAAEjE,IAE9B2H,EAAEtJ,IAAI2B,EAAGA,EAAG2H,EAAExM,IAAI6E,EAAGA,GAAK,GAE5BiE,EAAEjE,IAAMiE,EAAEjE,OAGP,IAAIhF,EAAIgF,EAAI,EAAGhF,EAAIyF,EAAGzF,IAAK,IAC1BgF,EAAI8T,GAAgB,IAAT7P,EAAEjE,GAAU,KACrB0R,EAAI,MACH,IAAIlZ,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBkZ,GAAK/J,EAAExM,IAAI3C,EAAGwH,GAAK2H,EAAExM,IAAI3C,EAAGwC,GAE9B0W,GAAKA,EAAI/J,EAAExM,IAAI6E,EAAGA,OACb,IAAIxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBmP,EAAEtJ,IAAI7F,EAAGwC,EAAG2M,EAAExM,IAAI3C,EAAGwC,GAAK0W,EAAI/J,EAAExM,IAAI3C,EAAGwH,IAG3ChE,EAAEhB,GAAK2M,EAAExM,IAAI6E,EAAGhF,MAGdmY,GAASnT,EAAI8T,MACV,IAAItb,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBkb,EAAErV,IAAI7F,EAAGwH,EAAG2H,EAAExM,IAAI3C,EAAGwH,OAIrBA,EAAI+T,EAAK,CACX/X,EAAEgE,GAAK,MACF,IAAIxH,EAAIwH,EAAI,EAAGxH,EAAIiI,EAAGjI,IACzBwD,EAAEgE,GAAKuS,EAAWvW,EAAEgE,GAAIhE,EAAExD,OAEf,IAATwD,EAAEgE,GAAU,CACVhE,EAAEgE,EAAI,GAAK,IACbhE,EAAEgE,GAAK,EAAIhE,EAAEgE,QAEV,IAAIxH,EAAIwH,EAAI,EAAGxH,EAAIiI,EAAGjI,IACzBwD,EAAExD,IAAMwD,EAAEgE,GAEZhE,EAAEgE,EAAI,IAAM,KAEdhE,EAAEgE,IAAMhE,EAAEgE,GACNA,EAAI,EAAIQ,GAAc,IAATxE,EAAEgE,GAAU,KACtB,IAAIxH,EAAIwH,EAAI,EAAGxH,EAAIgI,EAAGhI,IACzBob,EAAKpb,GAAK,MAEP,IAAIA,EAAIwH,EAAI,EAAGxH,EAAIgI,EAAGhI,QACpB,IAAIwC,EAAIgF,EAAI,EAAGhF,EAAIyF,EAAGzF,IACzB4Y,EAAKpb,IAAMwD,EAAEhB,GAAK2M,EAAExM,IAAI3C,EAAGwC,OAG1B,IAAIA,EAAIgF,EAAI,EAAGhF,EAAIyF,EAAGzF,IAAK,KAC1B0W,GAAK1V,EAAEhB,GAAKgB,EAAEgE,EAAI,OACjB,IAAIxH,EAAIwH,EAAI,EAAGxH,EAAIgI,EAAGhI,IACzBmP,EAAEtJ,IAAI7F,EAAGwC,EAAG2M,EAAExM,IAAI3C,EAAGwC,GAAK0W,EAAIkC,EAAKpb,QAIrC6a,MACG,IAAI7a,EAAIwH,EAAI,EAAGxH,EAAIiI,EAAGjI,IACzBmb,EAAEtV,IAAI7F,EAAGwH,EAAGhE,EAAExD,SAMlBmI,EAAI1H,KAAKG,IAAIqH,EAAGD,EAAI,MACpBsT,EAAMrT,IACRwD,EAAE6P,GAAOnM,EAAExM,IAAI2Y,EAAKA,IAElBtT,EAAIG,IACNsD,EAAEtD,EAAI,GAAK,GAEToT,EAAM,EAAIpT,IACZ3E,EAAE+X,GAAOpM,EAAExM,IAAI4Y,EAAKpT,EAAI,IAE1B3E,EAAE2E,EAAI,GAAK,EAEPwS,EAAO,KACJ,IAAInY,EAAI8Y,EAAK9Y,EAAIwY,EAAIxY,IAAK,KACxB,IAAIxC,EAAI,EAAGA,EAAIgI,EAAGhI,IACrBkb,EAAErV,IAAI7F,EAAGwC,EAAG,GAEd0Y,EAAErV,IAAIrD,EAAGA,EAAG,OAET,IAAIgF,EAAI8T,EAAM,EAAG9T,GAAK,EAAGA,OACf,IAATiE,EAAEjE,GAAU,KACT,IAAIhF,EAAIgF,EAAI,EAAGhF,EAAIwY,EAAIxY,IAAK,KAC3B0W,EAAI,MACH,IAAIlZ,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBkZ,GAAKgC,EAAEvY,IAAI3C,EAAGwH,GAAK0T,EAAEvY,IAAI3C,EAAGwC,GAE9B0W,GAAKA,EAAIgC,EAAEvY,IAAI6E,EAAGA,OACb,IAAIxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBkb,EAAErV,IAAI7F,EAAGwC,EAAG0Y,EAAEvY,IAAI3C,EAAGwC,GAAK0W,EAAIgC,EAAEvY,IAAI3C,EAAGwH,QAGtC,IAAIxH,EAAIwH,EAAGxH,EAAIgI,EAAGhI,IACrBkb,EAAErV,IAAI7F,EAAGwH,GAAI0T,EAAEvY,IAAI3C,EAAGwH,IAExB0T,EAAErV,IAAI2B,EAAGA,EAAG,EAAI0T,EAAEvY,IAAI6E,EAAGA,QACpB,IAAIxH,EAAI,EAAGA,EAAIwH,EAAI,EAAGxH,IACzBkb,EAAErV,IAAI7F,EAAGwH,EAAG,OAET,KACA,IAAIxH,EAAI,EAAGA,EAAIgI,EAAGhI,IACrBkb,EAAErV,IAAI7F,EAAGwH,EAAG,GAEd0T,EAAErV,IAAI2B,EAAGA,EAAG,OAKdqT,MACG,IAAIrT,EAAIS,EAAI,EAAGT,GAAK,EAAGA,IAAK,IAC3BA,EAAI+T,GAAgB,IAAT/X,EAAEgE,OACV,IAAIhF,EAAIgF,EAAI,EAAGhF,EAAIyF,EAAGzF,IAAK,KAC1B0W,EAAI,MACH,IAAIlZ,EAAIwH,EAAI,EAAGxH,EAAIiI,EAAGjI,IACzBkZ,GAAKiC,EAAExY,IAAI3C,EAAGwH,GAAK2T,EAAExY,IAAI3C,EAAGwC,GAE9B0W,GAAKA,EAAIiC,EAAExY,IAAI6E,EAAI,EAAGA,OACjB,IAAIxH,EAAIwH,EAAI,EAAGxH,EAAIiI,EAAGjI,IACzBmb,EAAEtV,IAAI7F,EAAGwC,EAAG2Y,EAAExY,IAAI3C,EAAGwC,GAAK0W,EAAIiC,EAAExY,IAAI3C,EAAGwH,QAIxC,IAAIxH,EAAI,EAAGA,EAAIiI,EAAGjI,IACrBmb,EAAEtV,IAAI7F,EAAGwH,EAAG,GAEd2T,EAAEtV,IAAI2B,EAAGA,EAAG,OAIZiU,EAAKtT,EAAI,EAETuT,EAAM9b,OAAO+b,aACVxT,EAAI,GAAG,KACRX,EAAGoU,MACFpU,EAAIW,EAAI,EAAGX,IAAM,IACT,IAAPA,EADmBA,IAAK,OAItBqU,EACJjc,OAAOkc,UAAYJ,EAAMjb,KAAK0W,IAAI1L,EAAEjE,GAAK/G,KAAK0W,IAAI1L,EAAEjE,EAAI,QACtD/G,KAAK0W,IAAI3T,EAAEgE,KAAOqU,GAASjc,OAAOmc,MAAMvY,EAAEgE,IAAK,CACjDhE,EAAEgE,GAAK,YAIPA,IAAMW,EAAI,EACZyT,EAAO,MACF,KACDI,MACCA,EAAK7T,EAAI,EAAG6T,GAAMxU,GACjBwU,IAAOxU,EADawU,IAAM,KAI1B9C,GACD8C,IAAO7T,EAAI1H,KAAK0W,IAAI3T,EAAEwY,IAAO,IAC7BA,IAAOxU,EAAI,EAAI/G,KAAK0W,IAAI3T,EAAEwY,EAAK,IAAM,MACpCvb,KAAK0W,IAAI1L,EAAEuQ,KAAQN,EAAMxC,EAAG,CAC9BzN,EAAEuQ,GAAM,SAIRA,IAAOxU,EACToU,EAAO,EACEI,IAAO7T,EAAI,EACpByT,EAAO,GAEPA,EAAO,EACPpU,EAAIwU,UAIRxU,IAEQoU,QACD,OACCK,EAAIzY,EAAE2E,EAAI,GACd3E,EAAE2E,EAAI,GAAK,MACN,IAAI3F,EAAI2F,EAAI,EAAG3F,GAAKgF,EAAGhF,IAAK,KAC3B0W,EAAIa,EAAWtO,EAAEjJ,GAAIyZ,GACrBC,EAAKzQ,EAAEjJ,GAAK0W,EACZiD,EAAKF,EAAI/C,KACbzN,EAAEjJ,GAAK0W,EACH1W,IAAMgF,IACRyU,GAAKE,EAAK3Y,EAAEhB,EAAI,GAChBgB,EAAEhB,EAAI,GAAK0Z,EAAK1Y,EAAEhB,EAAI,IAEpBqY,MACG,IAAI7a,EAAI,EAAGA,EAAIiI,EAAGjI,IACrBkZ,EAAIgD,EAAKf,EAAExY,IAAI3C,EAAGwC,GAAK2Z,EAAKhB,EAAExY,IAAI3C,EAAGmI,EAAI,GACzCgT,EAAEtV,IAAI7F,EAAGmI,EAAI,GAAIgU,EAAKhB,EAAExY,IAAI3C,EAAGwC,GAAK0Z,EAAKf,EAAExY,IAAI3C,EAAGmI,EAAI,IACtDgT,EAAEtV,IAAI7F,EAAGwC,EAAG0W,cAMf,OACC+C,EAAIzY,EAAEgE,EAAI,GACdhE,EAAEgE,EAAI,GAAK,MACN,IAAIhF,EAAIgF,EAAGhF,EAAI2F,EAAG3F,IAAK,KACtB0W,EAAIa,EAAWtO,EAAEjJ,GAAIyZ,GACrBC,EAAKzQ,EAAEjJ,GAAK0W,EACZiD,EAAKF,EAAI/C,KACbzN,EAAEjJ,GAAK0W,EACP+C,GAAKE,EAAK3Y,EAAEhB,GACZgB,EAAEhB,GAAK0Z,EAAK1Y,EAAEhB,GACVmY,MACG,IAAI3a,EAAI,EAAGA,EAAIgI,EAAGhI,IACrBkZ,EAAIgD,EAAKhB,EAAEvY,IAAI3C,EAAGwC,GAAK2Z,EAAKjB,EAAEvY,IAAI3C,EAAGwH,EAAI,GACzC0T,EAAErV,IAAI7F,EAAGwH,EAAI,GAAI2U,EAAKjB,EAAEvY,IAAI3C,EAAGwC,GAAK0Z,EAAKhB,EAAEvY,IAAI3C,EAAGwH,EAAI,IACtD0T,EAAErV,IAAI7F,EAAGwC,EAAG0W,cAMf,SACGxG,EAAQjS,KAAKzB,IACjByB,KAAK0W,IAAI1L,EAAEtD,EAAI,IACf1H,KAAK0W,IAAI1L,EAAEtD,EAAI,IACf1H,KAAK0W,IAAI3T,EAAE2E,EAAI,IACf1H,KAAK0W,IAAI1L,EAAEjE,IACX/G,KAAK0W,IAAI3T,EAAEgE,KAEP4U,EAAK3Q,EAAEtD,EAAI,GAAKuK,EAChB2J,EAAO5Q,EAAEtD,EAAI,GAAKuK,EAClB4J,EAAO9Y,EAAE2E,EAAI,GAAKuK,EAClB6J,EAAK9Q,EAAEjE,GAAKkL,EACZ8J,EAAKhZ,EAAEgE,GAAKkL,EACZtD,IAAMiN,EAAOD,IAAOC,EAAOD,GAAME,EAAOA,GAAQ,EAChD7X,EAAI2X,EAAKE,GAAQF,EAAKE,OACxBG,EAAQ,EACF,IAANrN,GAAiB,IAAN3K,IAEXgY,EADErN,EAAI,EACE,EAAI3O,KAAKsK,KAAKqE,EAAIA,EAAI3K,GAEtBhE,KAAKsK,KAAKqE,EAAIA,EAAI3K,GAE5BgY,EAAQhY,GAAK2K,EAAIqN,QAEfR,GAAKM,EAAKH,IAAOG,EAAKH,GAAMK,EAC5BC,EAAIH,EAAKC,MACR,IAAIha,EAAIgF,EAAGhF,EAAI2F,EAAI,EAAG3F,IAAK,KAC1B0W,EAAIa,EAAWkC,EAAGS,GACZ,IAANxD,IAASA,EAAItZ,OAAOkc,eACpBI,EAAKD,EAAI/C,EACTiD,EAAKO,EAAIxD,KACT1W,IAAMgF,IACRhE,EAAEhB,EAAI,GAAK0W,GAEb+C,EAAIC,EAAKzQ,EAAEjJ,GAAK2Z,EAAK3Y,EAAEhB,GACvBgB,EAAEhB,GAAK0Z,EAAK1Y,EAAEhB,GAAK2Z,EAAK1Q,EAAEjJ,GAC1Bka,EAAIP,EAAK1Q,EAAEjJ,EAAI,GACfiJ,EAAEjJ,EAAI,GAAK0Z,EAAKzQ,EAAEjJ,EAAI,GAClBqY,MACG,IAAI7a,EAAI,EAAGA,EAAIiI,EAAGjI,IACrBkZ,EAAIgD,EAAKf,EAAExY,IAAI3C,EAAGwC,GAAK2Z,EAAKhB,EAAExY,IAAI3C,EAAGwC,EAAI,GACzC2Y,EAAEtV,IAAI7F,EAAGwC,EAAI,GAAI2Z,EAAKhB,EAAExY,IAAI3C,EAAGwC,GAAK0Z,EAAKf,EAAExY,IAAI3C,EAAGwC,EAAI,IACtD2Y,EAAEtV,IAAI7F,EAAGwC,EAAG0W,MAGhBA,EAAIa,EAAWkC,EAAGS,GACR,IAANxD,IAASA,EAAItZ,OAAOkc,WACxBI,EAAKD,EAAI/C,EACTiD,EAAKO,EAAIxD,EACTzN,EAAEjJ,GAAK0W,EACP+C,EAAIC,EAAK1Y,EAAEhB,GAAK2Z,EAAK1Q,EAAEjJ,EAAI,GAC3BiJ,EAAEjJ,EAAI,IAAM2Z,EAAK3Y,EAAEhB,GAAK0Z,EAAKzQ,EAAEjJ,EAAI,GACnCka,EAAIP,EAAK3Y,EAAEhB,EAAI,GACfgB,EAAEhB,EAAI,GAAK0Z,EAAK1Y,EAAEhB,EAAI,GAClBmY,GAASnY,EAAIwF,EAAI,MACd,IAAIhI,EAAI,EAAGA,EAAIgI,EAAGhI,IACrBkZ,EAAIgD,EAAKhB,EAAEvY,IAAI3C,EAAGwC,GAAK2Z,EAAKjB,EAAEvY,IAAI3C,EAAGwC,EAAI,GACzC0Y,EAAErV,IAAI7F,EAAGwC,EAAI,GAAI2Z,EAAKjB,EAAEvY,IAAI3C,EAAGwC,GAAK0Z,EAAKhB,EAAEvY,IAAI3C,EAAGwC,EAAI,IACtD0Y,EAAErV,IAAI7F,EAAGwC,EAAG0W,GAIlB1V,EAAE2E,EAAI,GAAK8T,aAIR,KACCxQ,EAAEjE,IAAM,IACViE,EAAEjE,GAAKiE,EAAEjE,GAAK,GAAKiE,EAAEjE,GAAK,EACtBqT,OACG,IAAI7a,EAAI,EAAGA,GAAKyb,EAAIzb,IACvBmb,EAAEtV,IAAI7F,EAAGwH,GAAI2T,EAAExY,IAAI3C,EAAGwH,SAIrBA,EAAIiU,KACLhQ,EAAEjE,IAAMiE,EAAEjE,EAAI,KADL,KAIT0R,EAAIzN,EAAEjE,MACViE,EAAEjE,GAAKiE,EAAEjE,EAAI,GACbiE,EAAEjE,EAAI,GAAK0R,EACP2B,GAASrT,EAAIS,EAAI,MACd,IAAIjI,EAAI,EAAGA,EAAIiI,EAAGjI,IACrBkZ,EAAIiC,EAAExY,IAAI3C,EAAGwH,EAAI,GACjB2T,EAAEtV,IAAI7F,EAAGwH,EAAI,EAAG2T,EAAExY,IAAI3C,EAAGwH,IACzB2T,EAAEtV,IAAI7F,EAAGwH,EAAG0R,MAGZyB,GAASnT,EAAIQ,EAAI,MACd,IAAIhI,EAAI,EAAGA,EAAIgI,EAAGhI,IACrBkZ,EAAIgC,EAAEvY,IAAI3C,EAAGwH,EAAI,GACjB0T,EAAErV,IAAI7F,EAAGwH,EAAI,EAAG0T,EAAEvY,IAAI3C,EAAGwH,IACzB0T,EAAErV,IAAI7F,EAAGwH,EAAG0R,GAGhB1R,IAGFW,QAOF2S,EAAS,KACPhT,EAAMqT,EACVA,EAAID,EACJA,EAAIpT,OAGDE,EAAIA,OACJC,EAAIA,OACJwD,EAAIA,OACJyP,EAAIA,OACJC,EAAIA,EAGXxB,MAAM1U,OACA0X,EAAI1X,EACJzB,EAAI0C,KAAK0W,UACTC,EAAQ3W,KAAKuF,EAAErM,OACf0d,EAAKpX,EAAOS,MAAM0W,EAAOA,OAExB,IAAI7c,EAAI,EAAGA,EAAI6c,EAAO7c,IACrBS,KAAK0W,IAAIjR,KAAKuF,EAAEzL,KAAOwD,EACzBsZ,EAAGjX,IAAI7F,EAAGA,EAAG,GAEb8c,EAAGjX,IAAI7F,EAAGA,EAAG,EAAIkG,KAAKuF,EAAEzL,QAIxBkb,EAAIhV,KAAKgV,EACTC,EAAIjV,KAAK6W,qBAETC,EAAK7B,EAAE9P,KAAKyR,GACZG,EAAQ9B,EAAEjZ,KACVgb,EAAQhC,EAAEhZ,KACVib,EAAMzX,EAAOS,MAAM8W,EAAOC,OAEzB,IAAIld,EAAI,EAAGA,EAAIid,EAAOjd,QACpB,IAAIwC,EAAI,EAAGA,EAAI0a,EAAO1a,IAAK,KAC1ByI,EAAM,MACL,IAAIzD,EAAI,EAAGA,EAAIqV,EAAOrV,IACzByD,GAAO+R,EAAGra,IAAI3C,EAAGwH,GAAK0T,EAAEvY,IAAIH,EAAGgF,GAEjC2V,EAAItX,IAAI7F,EAAGwC,EAAGyI,UAIXkS,EAAI9R,KAAKsR,GAGlBS,iBAAiBnY,UACRiB,KAAKyT,MAAMjU,EAAOkF,KAAK3F,IAGhCoY,cACMlC,EAAIjV,KAAKiV,EACT3X,EAAI0C,KAAK0W,UACTK,EAAQ9B,EAAEjZ,KACVob,EAAQnC,EAAEhZ,QACV0X,EAAI,IAAInU,EAAOuX,EAAO/W,KAAKuF,EAAErM,YAE5B,IAAIY,EAAI,EAAGA,EAAIid,EAAOjd,QACpB,IAAIwC,EAAI,EAAGA,EAAI8a,EAAO9a,IACrB/B,KAAK0W,IAAIjR,KAAKuF,EAAEjJ,IAAMgB,GACxBqW,EAAEhU,IAAI7F,EAAGwC,EAAG2Y,EAAExY,IAAI3C,EAAGwC,GAAK0D,KAAKuF,EAAEjJ,QAKnC0Y,EAAIhV,KAAKgV,EAETgC,EAAQhC,EAAEhZ,KACVqb,EAAQrC,EAAE/Y,QACVwa,EAAI,IAAIjX,EAAOuX,EAAOC,OAErB,IAAIld,EAAI,EAAGA,EAAIid,EAAOjd,QACpB,IAAIwC,EAAI,EAAGA,EAAI0a,EAAO1a,IAAK,KAC1ByI,EAAM,MACL,IAAIzD,EAAI,EAAGA,EAAI+V,EAAO/V,IACzByD,GAAO4O,EAAElX,IAAI3C,EAAGwH,GAAK0T,EAAEvY,IAAIH,EAAGgF,GAEhCmV,EAAE9W,IAAI7F,EAAGwC,EAAGyI,UAIT0R,yBAIAzW,KAAKuF,EAAE,GAAKvF,KAAKuF,EAAEhL,KAAKG,IAAIsF,KAAK8B,EAAG9B,KAAK+B,GAAK,sBAI9C/B,KAAKuF,EAAE,kBAIV+R,EAAM/c,KAAKzB,IAAIkH,KAAK8B,EAAG9B,KAAK+B,GAAK/B,KAAKuF,EAAE,GAAK7L,OAAO+b,QACpDtX,EAAI,EACJoH,EAAIvF,KAAKuF,MACR,IAAIzL,EAAI,EAAGyd,EAAKhS,EAAErM,OAAQY,EAAIyd,EAAIzd,IACjCyL,EAAEzL,GAAKwd,GACTnZ,WAGGA,wBAIArD,MAAMsD,KAAK4B,KAAKuF,0BAIf7L,OAAO+b,QAAU,EAAKlb,KAAKzB,IAAIkH,KAAK8B,EAAG9B,KAAK+B,GAAK/B,KAAKuF,EAAE,oCAIzDvF,KAAKgV,oCAILhV,KAAKiV,8BAILzV,EAAOkF,KAAK1E,KAAKuF,ICtgBrB,SAAS4R,EAAQzb,EAAQ8b,GAAS,UACvC9b,EAASoX,EAAgBzS,YAAY3E,GACjC8b,EACK,IAAInD,EAA2B3Y,GAAQyb,UAM3C,SAAeM,EAAcC,EAAeF,GAAS,UAC1DC,EAAe3E,EAAgBzS,YAAYoX,GAC3CC,EAAgB5E,EAAgBzS,YAAYqX,GACxCF,EACK,IAAInD,EAA2BoD,GAAchE,MAAMiE,GAEnDD,EAAazW,WAChB,IAAI+R,EAAgB0E,GAAchE,MAAMiE,GACxC,IAAI5D,EAAgB2D,GAAchE,MAAMiE,GAZrCjE,CAAM/X,EAAQ8D,EAAO+N,IAAI7R,EAAOM,OCsB5B,SAAS2b,EACtB3d,EACA4d,EACAC,EACAC,EACA5d,EACA6d,EACAC,OAEIjZ,EAAQ8Y,EACRvK,EAAW9N,EAAO+N,IAAIqK,EAAO1e,OAAQ0e,EAAO1e,OAAQ6F,SAElD1E,EAAOH,EAAsB0d,OAE/BK,EAAgB,IAAI3S,aAAatL,EAAKM,EAAEpB,YACvC,IAAIY,EAAI,EAAGA,EAAIE,EAAKM,EAAEpB,OAAQY,IACjCme,EAAcne,GAAKO,EAAKL,EAAKM,EAAER,QAG7Boe,ECvCS,SACble,EACAie,EACAL,EACAE,EACAK,EACAJ,SAEMK,EAAWR,EAAO1e,OAClBmf,EAAWre,EAAKM,EAAEpB,WACpBof,EAAM9Y,EAAOS,MAAMmY,EAAUC,GAE7BtN,EAAW,MACV,IAAIwN,EAAQ,EAAGA,EAAQH,EAAUG,IAAS,IACX,IAA9BT,EAAmBS,GAAc,aACjCC,EAAQV,EAAmBS,GAC3BE,EAAYb,EAAOra,QACvBkb,EAAUF,IAAUC,MAChBE,EAAYP,EAAcM,MACzBV,EAQE,CACLU,EAAYb,EAAOra,QACnBkb,EAAUF,IAAUC,EACpBA,GAAS,MACLG,EAAaR,EAAcM,OAC1B,IAAIG,EAAQ,EAAGA,EAAQP,EAAUO,IACpCN,EAAI3Y,IACFoL,EACA6N,GACCD,EAAW3e,EAAKM,EAAEse,IAAUF,EAAU1e,EAAKM,EAAEse,KAAWJ,YAhBxD,IAAII,EAAQ,EAAGA,EAAQP,EAAUO,IACpCN,EAAI3Y,IACFoL,EACA6N,GACCX,EAAcW,GAASF,EAAU1e,EAAKM,EAAEse,KAAWJ,GAgB1DzN,WAGKuN,EDJYO,CACjB7e,EACAie,EACAL,EACAE,EACA5d,EACA6d,GAEEe,EAjDN,SAAwB9e,EAAMie,SACtBnW,EAAI9H,EAAKM,EAAEpB,WAEbof,EAAM,IAAI9Y,EAAOsC,EAAG,OAEnB,IAAI8W,EAAQ,EAAGA,EAAQ9W,EAAG8W,IAC7BN,EAAI3Y,IAAIiZ,EAAO,EAAG5e,EAAKS,EAAEme,GAASX,EAAcW,WAE3CN,EAyCaS,CAAe/e,EAAMie,GAErCe,EAAgB7B,EAClB7J,EAAS/D,IACP2O,EAAa/S,KACX+S,EAAa9N,YAAYoC,MAAM,MAAO,CAAEA,MAAOwL,OAKjDiB,EAA8Bf,EAAa/S,KAC7C2T,EAActM,MAAM,MAAO,CAAEA,MAAOwL,WAK/B,CACLkB,cAHkBF,EAAc7T,KAAK8T,GAIrCA,4BAAAA,GErDW,SAASE,EACtBnf,EACAE,EACAlB,EAAU,QAENogB,aACFA,EADEC,UAEFA,EAFEC,UAGFA,EAHErf,WAIFA,EAJEE,aAKFA,EALE0d,QAMFA,EANE0B,cAOFA,EAPEC,gBAQFA,EAREC,cASFA,EATEC,eAUFA,EAVE3B,kBAWFA,EAXED,mBAYFA,EAZE6B,qBAaFA,GCzCW,SAAsB3f,EAAME,EAAuBlB,OAC5D4gB,QACFA,EADEP,UAEFA,EAFEC,UAGFA,EAHEO,cAIFA,EAJE7B,QAKFA,EAAU,EALRH,QAMFA,EAAU,IANR0B,cAOFA,EAAgB,GAPdC,gBAQFA,EAAkB,EARhBC,cASFA,EAAgB,IATdC,eAUFA,EAAiB,KAVf3B,kBAWFA,GAAoB,EAXlBD,mBAYFA,EAAqB,GAZnB6B,qBAaFA,EAAuB,MACrB3gB,KAEA6e,GAAW,QACP,IAAIje,MAAM,gDACX,IAAKI,EAAKM,IAAMN,EAAKS,QACpB,IAAIb,MAAM,iDACX,IACJR,EAAQY,EAAKM,IACdN,EAAKM,EAAEpB,OAAS,IACfE,EAAQY,EAAKS,IACdT,EAAKS,EAAEvB,OAAS,QAEV,IAAIU,MACR,wEAEG,GAAII,EAAKM,EAAEpB,SAAWc,EAAKS,EAAEvB,aAC5B,IAAIU,MAAM,2DA+BdkgB,EAiBAV,EA7CAnf,EACF4f,GAAiB,IAAI/e,MAAMZ,EAAsBhB,QAAQ0G,KAAK,GAE5DyY,EAAWre,EAAKS,EAAEvB,OAClB6gB,EAAS9f,EAAWf,UACxBogB,EAAYA,GAAa,IAAIxe,MAAMif,GAAQna,KAAKlG,OAAOsgB,kBACvDX,EAAYA,GAAa,IAAIve,MAAMif,GAAQna,KAAKlG,OAAOugB,kBAEnDX,EAAUpgB,SAAWmgB,EAAUngB,aAC3B,IAAIU,MAAM,qDAGbR,EAAQa,SACL,IAAIL,MAAM,qCAGgB,iBAAvBke,EACTA,EAAqB,IAAIhd,MAAMb,EAAWf,QAAQ0G,KAAKkY,OAClD,CAAA,IAAI1e,EAAQ0e,SAKX,IAAIle,MACR,gGALEke,EAAmB5e,SAAW6gB,IAChCjC,EAAqB,IAAIhd,MAAMif,GAAQna,KAAKkY,EAAmB,QAS5C,iBAAZE,EAAsB,KAC3BjZ,EAAQ,EAAIiZ,GAAW,EAC3B8B,EAAS,IAAM/a,MACV,CAAA,IAAI3F,EAAQ4e,SAQX,IAAIpe,MACR,yFAREoe,EAAQ9e,OAASc,EAAKM,EAAEpB,OAAQ,KAC9B6F,EAAQ,EAAIiZ,EAAQ,IAAM,EAC9B8B,EAAS,IAAM/a,OAEf+a,EAAUhgB,GAAM,EAAIke,EAAQle,IAAM,UAStBX,IAAZygB,EAAuB,IACF,iBAAZA,QACH,IAAIhgB,MAAM,kCAEdsgB,EAAUC,KAAKC,MAAkB,IAAVR,EAC3BR,EAAe,IAAMe,KAAKC,MAAQF,OAElCd,EAAe,KAAM,MAGnBjf,EAAe,IAAIW,MAAMd,EAAKM,EAAEpB,YAC/B,IAAIY,EAAI,EAAGA,EAAIue,EAAUve,IAC5BK,EAAaL,GAAKggB,EAAOhgB,SAGpB,CACLsf,aAAAA,EACAC,UAAAA,EACAC,UAAAA,EACArf,WAAAA,EACAE,aAAAA,EACA0d,QAAAA,EACA0B,cAAAA,EACAC,gBAAAA,EACAC,cAAAA,EACAC,eAAAA,EACA3B,kBAAAA,EACAD,mBAAAA,EACA6B,qBAAAA,GDlEEU,CAAargB,EAAME,EAAuBlB,GAE1CoB,EAAQL,EACVC,EACAC,EACAC,EACAC,GAGEmgB,EAAYlgB,GAASsf,EAErBa,EAAY,OACTA,EAAYd,IAAkBa,EAAWC,IAAa,KACvDC,EAAgBpgB,GAEhB8e,cAAEA,EAAFD,4BAAiBA,GAAgCtB,EACnD3d,EACAC,EACA4d,EACAC,EACA5d,EACA6d,EACA5d,OAGG,IAAImH,EAAI,EAAGA,EAAIrH,EAAWf,OAAQoI,IACrCrH,EAAWqH,GAAK/G,KAAKG,IACnBH,KAAKzB,IAAIugB,EAAU/X,GAAIrH,EAAWqH,GAAK4X,EAAczc,IAAI6E,EAAG,IAC5DgY,EAAUhY,OAIdlH,EAAQL,EACNC,EACAC,EACAC,EACAC,GAGE0b,MAAMzb,GAAQ,UAGfogB,EAAgBpgB,GACjB8e,EACG9O,YACAjF,KAAK+T,EAAc7W,KAAKwV,GAAStO,IAAI0P,IACrCxc,IAAI,EAAG,GAEYkd,EACtB9B,EAAUtd,KAAKzB,IAAI+e,EAAU2B,EAAiB,OAE9Cpf,EAAQogB,EACR3C,EAAUtd,KAAKG,IAAImd,EAAU0B,EAAe,MAG1CH,UACI,IAAIxf,MACP,iCAAgCZ,EAAQ4gB,mBAI7CU,EAAYlgB,GAASsf,QAGhB,CACLe,gBAAiBxgB,EACjBygB,eAAgBtgB,EAChBugB,WAAYJ,GE3GT,SAASK,EAAaC,EAAsB,QAC7CC,KAAEA,EAAF9hB,QAAQA,GAAY6hB,SACxBC,EAoBF,SAAiBA,MACK,iBAATA,EAAmB,OAAOA,SAC7BA,EAAKC,cAAcC,QAAQ,UAAW,SACvC,SACA,4BA5BmB,gBA+BhB,IAAIphB,MAAO,2BA3BdqhB,CAAQH,GACPA,QALkB,QAOf,CACLI,UAAWC,EACXN,oBAAqBR,EAAaS,EAAM9hB,kBAGpC,IAAIY,MAAO,2BAIvB,SAASygB,EAAaS,EAAM9hB,EAAU,WAE5B8hB,QAlBkB,SAoBftiB,OAAO4iB,OAAO,GAAIC,EAAWriB,IAe1C,MAAMqiB,EAAY,CAChBxD,QAAS,IACT4B,cAAe,IACfC,eAAgB,MCxCL4B,GAAuB,EAAI/gB,KAAKghB,IAChCC,EAAmBjhB,KAAKsK,KAAKtK,KAAKkhB,GAAKlhB,KAAKghB,KAC5CG,EAAanhB,KAAKsK,KAAK,GACvB8W,EAAYphB,KAAKsK,KAAK,EAAItK,KAAKghB,KAC/BK,EAAsBrhB,KAAKsK,KAAK,EAAItK,KAAKghB,KAAO,ECGtD,MAAMM,EAOX/f,YAAY9C,EAAU,SACf8iB,KAAO9iB,EAAQ+iB,GAChBF,EAASG,YAAY,EAAIhjB,EAAQ+iB,IACjC/iB,EAAQ8iB,KACR9iB,EAAQ8iB,KACR,SACCG,YACgB9iB,IAAnBH,EAAQijB,OACJ1hB,KAAKsK,MAAMyW,EAAsB/gB,KAAKkhB,IAAMzb,KAAK8b,KACjD9iB,EAAQijB,OAUhBC,QAAQljB,EAAU,QACZE,OAAEA,EAAFmC,OAAUA,EAAS2E,KAAKmc,aAAgBnjB,EAEvCE,IACHA,EAASqB,KAAKG,IAAIH,KAAKuP,KAAK9J,KAAK8b,KAAOzgB,GAASd,KAAKC,IAAI,EAAG,IAAM,GAC/DtB,EAAS,GAAM,GAAGA,WAGlBkT,GAAUlT,EAAS,GAAK,EACxBc,EAAO,IAAIsL,aAAapM,OACzB,IAAIY,EAAI,EAAGA,GAAKsS,EAAQtS,IAC3BE,EAAKF,GAAKkG,KAAKoc,IAAItiB,EAAIsS,GAAUpM,KAAKic,OACtCjiB,EAAKd,EAAS,EAAIY,GAAKE,EAAKF,UAGvBE,EAQToiB,IAAI9hB,UACKuhB,EAASO,IAAI9hB,EAAG0F,KAAK8b,MAQ9BK,UAAUE,EAAO,cACRR,EAASM,UAAUE,GAQ5BC,iBACST,EAASS,QAAQtc,KAAK8b,KAAM,CAAEG,OAAQjc,KAAKic,SASpDD,YAAYO,UAEHV,EAASG,YAAYO,GAS9BC,YAAYV,EAAO9b,KAAK8b,aACfD,EAASW,YAAYV,GAO9BW,QAAQX,QACDA,KAAOA,EAOdY,UAAUT,QACHA,OAASA,GAUlBJ,EAASO,IAAM,SAAa9hB,EAAGwhB,EAAO,YAC7BvhB,KAAKqX,IAAI0J,EAAsB/gB,KAAKC,IAAIF,EAAIwhB,EAAM,KAS3DD,EAASG,YAAc,SAAqBO,UACnCA,EAAQZ,GASjBE,EAASW,YAAc,SAAqBV,UACnCA,EAAOH,GAWhBE,EAASS,QAAU,SAAiBR,EAAM9iB,EAAU,QAC9CijB,OAAEA,EAAS,GAAMjjB,SACbijB,EAAST,EAAmBM,EAAQ,GAQ9CD,EAASM,UAAY,SAAmBE,EAAO,cACtC9hB,KAAKsK,KAAK,GChKJ,SAAgBvK,MAEnB,IAANA,EAAS,OAAO,MAChBqiB,EAAgBpiB,KAAKyX,IAAI,EAAI1X,EAAIA,GACjCsiB,EAAgBD,EAAgB,EAAI,GAHhC,KAGqCpiB,KAAKkhB,IAC9CoB,EAAYtiB,KAAKsK,KAAK+X,GAAiB,EAAID,EAJvC,aAKSpiB,KAAKsK,KAAKgY,EAAYD,IAClBtiB,EAAI,EAAI,GAAK,GDyJZwiB,CAAOT,IEnKxB,MAAMU,EAOXjhB,YAAY9C,EAAU,SACf8iB,UAAwB3iB,IAAjBH,EAAQ8iB,KAAqB,IAAM9iB,EAAQ8iB,UAClDG,YACgB9iB,IAAnBH,EAAQijB,OAAuB,EAAI1hB,KAAKkhB,GAAKzb,KAAK8b,KAAO9iB,EAAQijB,OASrEC,QAAQljB,EAAU,QACZE,OAAEA,EAAFmC,OAAUA,EAAS2E,KAAKmc,aAAgBnjB,EAEvCE,IACHA,EAASqB,KAAKG,IAAIH,KAAKuP,KAAK9J,KAAK8b,KAAOzgB,GAASd,KAAKC,IAAI,EAAG,IAAM,GAC/DtB,EAAS,GAAM,GAAGA,WAGlBkT,GAAUlT,EAAS,GAAK,EACxBc,EAAO,IAAIsL,aAAapM,OACzB,IAAIY,EAAI,EAAGA,GAAKsS,EAAQtS,IAC3BE,EAAKF,GAAKkG,KAAKoc,IAAItiB,EAAIsS,GAAUpM,KAAKic,OACtCjiB,EAAKd,EAAS,EAAIY,GAAKE,EAAKF,UAEvBE,EAQToiB,IAAI9hB,UACKyiB,EAAWX,IAAI9hB,EAAG0F,KAAK8b,MAQhCK,UAAUE,EAAO,cACRU,EAAWZ,UAAUE,GAQ9BC,iBACSS,EAAWT,QAAQtc,KAAK8b,KAAM,CAAEG,OAAQjc,KAAKic,SAStDO,YAAYV,EAAO9b,KAAK8b,aACfiB,EAAWP,YAAYV,GAShCE,YAAYO,UACHQ,EAAWf,YAAYO,GAMhCE,QAAQX,QACDA,KAAOA,EAOdY,UAAUT,QACHA,OAASA,GAUlBc,EAAWX,IAAM,SAAa9hB,EAAGwhB,SACzBkB,EAAalB,EAAOA,SACnBkB,GAAc,EAAIziB,KAAKC,IAAIF,EAAG,GAAK0iB,IAS5CD,EAAWP,YAAc,SAAqBV,UACrCA,EAAOJ,GAShBqB,EAAWf,YAAc,SAAqBO,UACrCA,EAAQb,GAUjBqB,EAAWT,QAAU,SAAiBR,EAAM9iB,EAAU,QAChDijB,OAAEA,EAAS,GAAMjjB,SAEbijB,EAAS1hB,KAAKkhB,GAAKK,EAAQ,GAQrCiB,EAAWZ,UAAY,SAAmBE,EAAO,cACxC,EAAI9hB,KAAKgY,IAAIhY,KAAKkhB,IAAMY,EAAO,MC9IjC,MAAMY,EAQXnhB,YAAY9C,EAAU,SACfkkB,QAAoB/jB,IAAfH,EAAQkkB,GAAmB,GAAMlkB,EAAQkkB,QAC9CpB,UAAwB3iB,IAAjBH,EAAQ8iB,KAAqB,IAAM9iB,EAAQ8iB,UAClDG,YACgB9iB,IAAnBH,EAAQijB,OACJ,GACEjc,KAAKkd,GAAK3iB,KAAKsK,MAAMyW,EAAsB/gB,KAAKkhB,IAAOzb,KAAK8b,MAC1D,EAAI9b,KAAKkd,IAAMld,KAAK8b,KAAOvhB,KAAKkhB,GAAM,GAC1CziB,EAAQijB,OAWhBC,QAAQljB,EAAU,QACZE,OAAEA,EAAFmC,OAAUA,EAAS2E,KAAKmc,aAAgBnjB,EACvCE,IACHA,EAASqB,KAAKuP,KAAK9J,KAAK8b,KAAOzgB,GAC3BnC,EAAS,GAAM,GAAGA,WAGlBkT,GAAUlT,EAAS,GAAK,MAE1Bc,EAAO,IAAIsL,aAAapM,OACvB,IAAIY,EAAI,EAAGA,GAAKsS,EAAQtS,IAC3BE,EAAKF,GAAKkG,KAAKoc,IAAItiB,EAAIsS,GAAUpM,KAAKic,OACtCjiB,EAAKd,EAAS,EAAIY,GAAKE,EAAKF,UAGvBE,EASToiB,IAAI9hB,UACK2iB,EAAYb,IAAI9hB,EAAG0F,KAAK8b,KAAM9b,KAAKkd,IAS5Cf,UAAUE,EAAO,MAAQa,EAAKld,KAAKkd,WAC1BD,EAAYd,UAAUE,EAAMa,GAOrCZ,iBACSW,EAAYX,QAAQtc,KAAK8b,KAAM,CAAEG,OAAQjc,KAAKic,OAAQiB,GAAIld,KAAKkd,KASxElB,YAAYO,EAAOW,UACVD,EAAYjB,YAAYO,EAAOW,GAQxCV,YAAYV,EAAO9b,KAAK8b,KAAMoB,EAAKld,KAAKkd,WAC/BD,EAAYT,YAAYV,EAAMoB,GAOvCT,QAAQX,QACDA,KAAOA,EAOdY,UAAUT,QACHA,OAASA,EAOhBkB,MAAMD,QACCA,GAAKA,GChHP,SAASE,EAAyBnb,UAChC,SAAU+Q,OACXqK,EAAKpb,EAAE/I,OAAS,EAChBkD,EAAS,MACR,IAAItC,EAAI,EAAGA,EAAIujB,EAAIvjB,IACtBsC,GACE6F,EAAEnI,EAAIujB,GAAMJ,EAAYb,IAAIpJ,EAAI/Q,EAAEnI,GAAImI,EAAEnI,EAAS,EAALujB,GAASpb,EAAEnI,EAAS,EAALujB,WAExDjhB,GCTJ,SAASkhB,EAAerb,UACtB,SAAU+Q,OACXqK,EAAKpb,EAAE/I,OAAS,EAChBkD,EAAS,MACR,IAAItC,EAAI,EAAGA,EAAIujB,EAAIvjB,IACtBsC,GAAU6F,EAAEnI,EAAIujB,GAAMxB,EAASO,IAAIpJ,EAAI/Q,EAAEnI,GAAImI,EAAEnI,EAAS,EAALujB,WAE9CjhB,GCNJ,SAASmhB,EAAiBtb,UACxB,SAAU+Q,OACXqK,EAAKpb,EAAE/I,OAAS,EAChBkD,EAAS,MACR,IAAItC,EAAI,EAAGA,EAAIujB,EAAIvjB,IACtBsC,GAAU6F,EAAEnI,EAAIujB,GAAMN,EAAWX,IAAIpJ,EAAI/Q,EAAEnI,GAAImI,EAAEnI,EAAS,EAALujB,WAEhDjhB,GHoHX6gB,EAAYb,IAAM,SAAa9hB,EAAGwhB,EAAMoB,EAAK,WACnC,EAAIA,GAAMH,EAAWX,IAAI9hB,EAAGwhB,GAAQoB,EAAKrB,EAASO,IAAI9hB,EAAGwhB,IASnEmB,EAAYjB,YAAc,SAAqBO,EAAOW,EAAK,WAClDX,GAASW,EAAKtB,EAAsB,IAQ7CqB,EAAYT,YAAc,SAAqBV,EAAMoB,EAAK,WACjDpB,GAAQoB,EAAKtB,EAAsB,IAW5CqB,EAAYX,QAAU,SAAiBR,EAAM9iB,EAAU,QACjDijB,OAAEA,EAAS,EAAXiB,GAAcA,EAAK,IAAQlkB,SACvB8iB,EAAOG,GAAUiB,EAAK1B,GAAoB,EAAI0B,GAAM3iB,KAAKkhB,IAAO,GAS1EwB,EAAYd,UAAY,SAAmBE,EAAO,MAAQa,EAAK,WACtDA,EAAK,EAAIH,EAAWZ,UAAUE,GAAQR,EAASM,UAAUE,IIzKlE,MAUMmB,EAAO,CAAC,IAAK,IAAK,QAAS,MAmIjC,SAASC,EAASC,EAAgBC,EAAMC,EAAO5kB,OACzC6kB,EAAO7kB,EAAQ6kB,YACXD,QA/IS,SAiJLF,QA5IJ,SA8IOC,EAAKrjB,OA7IZ,SA+IOqjB,EAAKljB,EAAIojB,OA9IZ,SAgJGF,EAAKpB,WA/IX,SAiJMoB,EAAKT,IAAM,iBAEZ,IAAItjB,MAAM,uCAxJQ,SA2JpB8jB,QAzJJ,cA2JoCvkB,IAA7BwkB,EAAKG,oBACRH,EAAKG,yBAC2B3kB,IAAhCH,EAAQ8kB,oBACR9kB,EAAQ8kB,oBACRH,EAAKpB,MAAQ,SA9JjB,cAgKoCpjB,IAA7BwkB,EAAKI,oBACRJ,EAAKI,oBACL/kB,EAAQ+kB,yBAjKR,cAmKoC5kB,IAAjCwkB,EAAKK,wBACRL,EAAKK,6BAC+B7kB,IAApCH,EAAQglB,wBACRhlB,EAAQglB,wBACRL,EAAKpB,MAAQ,SAtKhB,cAwKoCpjB,IAA9BwkB,EAAKM,qBACRN,EAAKM,qBACLjlB,EAAQilB,mCAEN,IAAIrkB,MAAM,uCAnLR,SAsLJ8jB,QAlLJ,SAoLOC,EAAKrjB,EAAIqjB,EAAKpB,MAAQvjB,EAAQklB,gBAnLrC,SAqLQP,EAAKljB,EAAIojB,EAAQ7kB,EAAQmlB,gBApL7B,SAsLGR,EAAKpB,MAAQvjB,EAAQolB,oBArL3B,SAuLMplB,EAAQqlB,yBAET,IAAIzkB,MAAM,uCA/LR,SAkMJ8jB,QA/LJ,SAiMOC,EAAKrjB,EAAIqjB,EAAKpB,MAAQvjB,EAAQslB,gBAhMrC,SAkMQX,EAAKljB,EAAIojB,EAAQ7kB,EAAQulB,gBAjM7B,SAmMGZ,EAAKpB,MAAQvjB,EAAQwlB,oBAlM3B,SAoMMxlB,EAAQylB,yBAET,IAAI7kB,MAAM,gDAGdA,MAAM,0CAtLX,SAAkBI,EAAM0kB,EAAO1lB,EAAU,QAC1C2lB,MACFA,EAAQ,CAAE7D,KAAM,YADd8D,aAEFA,EAAe,CACb9D,KAAM,OAEN9hB,GAEAolB,eACFA,EAAiB,IADfI,eAEFA,EAAiB,EAFfN,WAGFA,EAAa,EAHXI,WAIFA,EAAa,EAJXH,WAKFA,EAAa,EALXI,WAMFA,EAAa,IANXF,WAOFA,EAAa,EAPXI,WAQFA,EAAa,EARXX,oBASFA,EATEC,oBAUFA,EAAsB,KAVpBC,wBAWFA,EAXEC,qBAYFA,EAAuB,KACrBW,KAEJF,EAAQG,KAAKC,MAAMD,KAAKE,UAAUL,IAER,iBAAfC,EAAM7D,WACT,IAAIlhB,MAAM,+BAYdwe,EACA4G,EAVAlE,EAAO6D,EAAM7D,KAAKC,cAAcC,QAAQ,UAAW,IAEnD1gB,EAAIN,EAAKM,EACTujB,EAAOoB,EAAYjlB,EAAKS,GACxBA,EAAI,IAAIK,MAAMR,EAAEpB,YACf,IAAIY,EAAI,EAAGA,EAAIQ,EAAEpB,OAAQY,IAC5BW,EAAEX,GAAKE,EAAKS,EAAEX,GAAK+jB,SAKb/C,OACD,WACH1C,EAAW,EACX4G,EAAa1B,YAEV,aACHlF,EAAW,EACX4G,EAAazB,YAEV,cACHnF,EAAW,EACX4G,EAAa5B,sBAGP,IAAIxjB,MAAM,wCAGdslB,EAAkB,CACtBrB,KAAAA,EACAK,WAAAA,EACAI,WAAAA,EACAH,WAAAA,EACAI,WAAAA,EACAF,WAAAA,EACAI,WAAAA,EACAL,eAAAA,EACAI,eAAAA,EACAV,oBAAAA,EACAC,oBAAAA,EACAC,wBAAAA,EACAC,qBAAAA,OAEEkB,EAAWT,EAAMxlB,OACjBkmB,EAAO,IAAI9Z,aAAa6Z,EAAW/G,GACnCiH,EAAO,IAAI/Z,aAAa6Z,EAAW/G,GACnCkH,EAAQ,IAAIha,aAAa6Z,EAAW/G,GACpCN,EAAqB,IAAIxS,aAAa6Z,EAAW/G,OAChD,IAAIte,EAAI,EAAGA,EAAIqlB,EAAUrlB,IAAK,KAC7B6jB,EAAOe,EAAM5kB,OACZ,IAAIyL,EAAI,EAAGA,EAAI6S,EAAU7S,IAC5B+Z,EAAMxlB,EAAIyL,EAAI4Z,GAAY1B,EAASlY,EAAGoY,EA3GzB,EA2G2CuB,GACxDE,EAAKtlB,EAAIyL,EAAI4Z,GAAY1B,EAASlY,EAAGoY,EA3GzB,EA2G0CuB,GACtDG,EAAKvlB,EAAIyL,EAAI4Z,GAAY1B,EAASlY,EAAGoY,EA3GzB,EA2G0CuB,GACtDpH,EAAmBhe,EAAIyL,EAAI4Z,GAAY1B,EACrClY,EACAoY,EA7G0B,EA+G1BuB,OAKFhE,UAAEA,EAAFL,oBAAaA,GAAwBD,EAAagE,GAEtD/D,EAAoBxB,UAAY+F,EAChCvE,EAAoBvB,UAAY+F,EAChCxE,EAAoBhB,cAAgByF,EACpCzE,EAAoB/C,mBAAqBA,MAErCyH,EAAOrE,EAAU,CAAE5gB,EAAAA,EAAGG,EAAAA,GAAKukB,EAAYnE,IAErCH,eAAgBtgB,EAAlBugB,WAAyBA,GAAe4E,EACxCnjB,EAAS,CAAEhC,MAAAA,EAAOugB,WAAAA,EAAY+D,MAAAA,OAC7B,IAAI5kB,EAAI,EAAGA,EAAI4kB,EAAMxlB,OAAQY,IAAK,CACrCylB,EAAK9E,gBAAgB3gB,EAAI4kB,EAAMxlB,SAAW2kB,MACrC,IAAItY,EAAI,EAAGA,EAAI6S,EAAU7S,IAE5BmZ,EAAM5kB,GAAG0jB,EAAKjY,IAAMga,EAAK9E,gBAAgB3gB,EAAIyL,EAAImZ,EAAMxlB,eAIpDkD"}